论文标题
动态系统中的多个故障估计:可拖动设计和性能界限
Multiple Faults Estimation in Dynamical Systems: Tractable Design and Performance Bounds
论文作者
论文摘要
在本文中,我们建议使用一类非线性动力学系统的可拖动的非线性故障隔离过滤器以及明确的性能界限。我们考虑存在同时并通过相同的动力学关系发生的加性和乘法故障的存在,该关系代表了几个应用程序域中的相关情况。提出的过滤器体系结构结合了控制文献中基于模型的方法的工具和机器学习的回归技术。为此,我们通过系统理论的角度查看回归运算符,以开发运算符界限,然后将其用于为提出的估计过滤器得出性能界限。在恒定,同时且相同作用的加法和乘法故障的情况下,可以证明估计误差以指数率收敛到零。在存在初期故障的情况下,提议的估计过滤器的性能通过应用于SAE 4级自动化车辆的横向安全系统的应用来验证。数值结果表明,这项研究的理论界限确实接近实际估计误差。
In this article, we propose a tractable nonlinear fault isolation filter along with explicit performance bounds for a class of nonlinear dynamical systems. We consider the presence of additive and multiplicative faults, occurring simultaneously and through an identical dynamical relationship, which represents a relevant case in several application domains. The proposed filter architecture combines tools from model-based approaches in the control literature and regression techniques from machine learning. To this end, we view the regression operator through a system-theoretic perspective to develop operator bounds that are then utilized to derive performance bounds for the proposed estimation filter. In the case of constant, simultaneously and identically acting additive and multiplicative faults, it can be shown that the estimation error converges to zero with an exponential rate. The performance of the proposed estimation filter in the presence of incipient faults is validated through an application on the lateral safety systems of SAE level 4 automated vehicles. The numerical results show that the theoretical bounds of this study are indeed close to the actual estimation error.