论文标题
一环的neumann-dirichlet开放弦和改变边界的顶点操作员
One-loop masses of Neumann-Dirichlet open strings and boundary-changing vertex operators
论文作者
论文摘要
当超对称性自发折断时,我们通过无质量标量在开放字符串的Neumann-dirichlet扇区中以无质量标量的形式得出质量。它是通过计算插入环和möbius带边界上的“改变边界的顶点算子”的两点函数来完成的。这需要评估“激发边界改变场”的相关因子,这些相似者类似于封闭字符串的激发扭曲场。我们从$ t^2 \ times t^4/\ mathbb {z} _2 $上处理的类型IIB Orientifold理论工作,其中$ \ Mathcal {n} = 2 $ superSymmetry to $ \ Mathcal {n} = 0 $由Scherk-Schwarz机构沿$ T^2 $。即使平方质量的完整表达很复杂,当背景的最低比例是超对称性断裂刻度$ m_ {3/2} $时,它也会减少到非常简单的形式。我们将结果应用于在此制度中分析的稳定性在Neumann-Dirichlet部门中产生的模量场的量子水平上。这完成了参考研究的研究。 [32],衍生出在开放或封闭式扇区中所有其他类型的模量的量子质量。最终,我们确定了所有brane配置,这些配置在一个循环中产生没有tachyon的背景,并产生有效的潜在指数抑制,或者严格呈$ m_ {3/2} $的失控行为。
We derive the masses acquired at one loop by massless scalars in the Neumann-Dirichlet sector of open strings, when supersymmetry is spontaneously broken. It is done by computing two-point functions of "boundary-changing vertex operators" inserted on the boundaries of the annulus and Möbius strip. This requires the evaluation of correlators of "excited boundary-changing fields," which are analogous to excited twist fields for closed strings. We work in the type IIB orientifold theory compactified on $T^2\times T^4/\mathbb{Z}_2$, where $\mathcal{N}=2$ supersymmetry is broken to $\mathcal{N}=0$ by the Scherk-Schwarz mechanism implemented along $T^2$. Even though the full expression of the squared masses is complicated, it reduces to a very simple form when the lowest scale of the background is the supersymmetry breaking scale $M_{3/2}$. We apply our results to analyze in this regime the stability at the quantum level of the moduli fields arising in the Neumann-Dirichlet sector. This completes the study of Ref. [32], where the quantum masses of all other types of moduli arising in the open- or closed-string sectors are derived. Ultimately, we identify all brane configurations that produce backgrounds without tachyons at one loop and yield an effective potential exponentially suppressed, or strictly positive with runaway behavior of $M_{3/2}$.