论文标题

GPU张量芯上的高通量平行Viterbi解码器

High-Throughput Parallel Viterbi Decoder on GPU Tensor Cores

论文作者

Mohammadidoost, Alireza, Hashemi, Matin

论文摘要

在GPU上而不是FPGA上实施Vitrerbi解码算法的许多研究工作,因为此平台除了出色的性能外提供了相当大的灵活性。最近,在现代GPU架构中最近引入的张量核心提供了令人难以置信的计算能力。本文提出了基于现代GPU体系结构中张量核心的Viterbi解码算法的新型并行实现。提出的平行算法被优化,以有效利用张量芯的计算能力。与以前的工作相比,实验显示出相当大的吞吐量改进。

Many research works have been performed on implementation of Vitrerbi decoding algorithm on GPU instead of FPGA because this platform provides considerable flexibility in addition to great performance. Recently, the recently-introduced Tensor cores in modern GPU architectures provide incredible computing capability. This paper proposes a novel parallel implementation of Viterbi decoding algorithm based on Tensor cores in modern GPU architectures. The proposed parallel algorithm is optimized to efficiently utilize the computing power of Tensor cores. Experiments show considerable throughput improvements in comparison with previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源