论文标题

协会:提醒您的gan不要忘记

Association: Remind Your GAN not to Forget

论文作者

Gu, Yi, Li, Jie, Gao, Yuting, Chen, Ruoxin, Wu, Chentao, Cai, Feiyang, Wang, Chao, Zhang, Zirui

论文摘要

神经网络容易受到灾难性遗忘的影响。在适应新任务时,他们无法保留先前获得的知识。受人类关联记忆系统的启发,我们提出了一种类似脑的方法,该方法模仿了关联学习过程以实现持续学习。我们设计了一种启发式机制来有效地刺激该模型,该机制指导该模型根据当前情况和获得的关联经验来回忆历史事件。此外,还添加了一种蒸馏度量,以使突触传播的功效令人沮丧,从而抑制了针对新任务的特征重建学习。该框架是由增强和抑郁刺激介导的,在指导突触和行为可塑性中起着相反的作用。它不需要访问原始数据,并且与人类认知过程更相似。实验证明了我们方法在减轻图像到图像翻译任务上的灾难性遗忘方面的有效性。

Neural networks are susceptible to catastrophic forgetting. They fail to preserve previously acquired knowledge when adapting to new tasks. Inspired by human associative memory system, we propose a brain-like approach that imitates the associative learning process to achieve continual learning. We design a heuristics mechanism to potentiatively stimulate the model, which guides the model to recall the historical episodes based on the current circumstance and obtained association experience. Besides, a distillation measure is added to depressively alter the efficacy of synaptic transmission, which dampens the feature reconstruction learning for new task. The framework is mediated by potentiation and depression stimulation that play opposing roles in directing synaptic and behavioral plasticity. It requires no access to the original data and is more similar to human cognitive process. Experiments demonstrate the effectiveness of our method in alleviating catastrophic forgetting on image-to-image translation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源