论文标题
PowerNet:可通过最大卷积神经网络估算可转移的动态IR下降估计
PowerNet: Transferable Dynamic IR Drop Estimation via Maximum Convolutional Neural Network
论文作者
论文摘要
IR Drop是几乎所有芯片设计所需的基本约束。但是,其评估通常需要很长时间才能阻碍缓解技术解决违规行为。在这项工作中,我们基于卷积神经网络(CNN)开发了一种名为PowerNet的快速动态IR下降估计技术。它可以处理基于矢量的和无向量的IR分析。此外,提出的CNN模型是一般的,可转移到不同的设计。这与大多数现有的机器学习(ML)方法相反,该方法仅适用于特定设计。实验结果表明,对于挑战性无红外跌落的具有挑战性的情况,PowerNet的准确性优于最新的ML方法,而与精确的IR Drop商业工具相比,PowerNet的准确性超过了30倍的速度。此外,由PowerNet引导的缓解工具分别在两种工业设计上将IR Drop Hotspots降低了26%和31%,其功率电网的修改非常有限。
IR drop is a fundamental constraint required by almost all chip designs. However, its evaluation usually takes a long time that hinders mitigation techniques for fixing its violations. In this work, we develop a fast dynamic IR drop estimation technique, named PowerNet, based on a convolutional neural network (CNN). It can handle both vector-based and vectorless IR analyses. Moreover, the proposed CNN model is general and transferable to different designs. This is in contrast to most existing machine learning (ML) approaches, where a model is applicable only to a specific design. Experimental results show that PowerNet outperforms the latest ML method by 9% in accuracy for the challenging case of vectorless IR drop and achieves a 30 times speedup compared to an accurate IR drop commercial tool. Further, a mitigation tool guided by PowerNet reduces IR drop hotspots by 26% and 31% on two industrial designs, respectively, with very limited modification on their power grids.