论文标题
耗散深度神经动力学系统
Dissipative Deep Neural Dynamical Systems
论文作者
论文摘要
在本文中,我们为通过深神经网络参数的离散时间动力学系统的消散性和局部渐近稳定提供了足够的条件。我们利用神经网络作为点式仿射图的表示,从而揭示其本地线性操作员并使其可以通过经典的系统分析和设计方法访问。这使我们能够通过评估其耗散性并估算其固定点和状态空间分区来“打开神经动力学系统行为的黑匣子”。我们将这些局部线性运算符的规范与耗散系统中存储的能量的范围联系起来,其供应率由其总偏见项表示。从经验上讲,我们分析了这些局部线性运算符的动力学行为和特征值光谱的差异,这些局部线性运算符具有不同的重量因素化,激活函数,偏差项和深度。
In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic and design methods. This allows us to "crack open the black box" of the neural dynamical system's behavior by evaluating their dissipativity, and estimating their stationary points and state-space partitioning. We relate the norms of these local linear operators to the energy stored in the dissipative system with supply rates represented by their aggregate bias terms. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.