论文标题

在极端分辨率下通过悬浮的突出形成

Prominence formation by levitation-condensation at extreme resolutions

论文作者

Jenkins, Jack, Keppens, Rony

论文摘要

太阳大气中的突出是在不断发展的磁性拓扑中的力量和热力学的有趣而微妙的平衡。这种相对较酷的材料如何存在于冠状高度,以及在外观,之中和之后驱动其演变的原因仍然是一个充满开放问题的区域。我们故意专注于悬浮敏感的情况,在该场景中,冠状绳索形成并最终表现出原位凝结,并以极端的分辨率将其重新定为6公里。我们在2.5D翻译不变的设置中执行网格自适应数值模拟,在其中我们可以研究嵌套通量绳平衡的晚期磁流体动力学稳定性理论的所有指标的分布。我们特别量化了对流连续性不稳定性(CCI),热不稳定性(TI),压力线性和质量扫描指标,这是一系列通过悬浮敏化形成的突出的数值模拟。总体而言,我们发现突出凝结的形成和演变以明确定义的序列发生,而不管3至10个高斯之间的分辨率或背景强度如何。 CCI在发现由Ti驱动的不同凝结形成之前,控制了血浆的缓慢演变。向磁通绳的拓扑倾斜的凝结的演变是这些冷凝水最初与周围环境相比,这些冷凝的结果。从斜射性分布中,在形成和不断发展的冷凝物中推断出较小的旋转运动。在突出的“整体”完全凝结后,该等离子体向较低高度的缓慢下降似乎与由局部电流扩散和磁重新连接的发作所驱动的质量降低机制一致。

Prominences in the solar atmosphere represent an intriguing and delicate balance of forces and thermodynamics in an evolving magnetic topology. How this relatively cool material comes to reside at coronal heights, and what drives its evolution prior to, during, and after its appearance remains an area full of open questions. We deliberately focus on the levitation-condensation scenario, where a coronal flux rope forms and eventually demonstrates in-situ condensations, revisiting it at extreme resolutions down to order 6 km in scale. We perform grid-adaptive numerical simulations in a 2.5D translationally invariant setup, where we can study the distribution of all metrics involved in advanced magnetohydrodynamic stability theory for nested flux rope equilibria. We quantify in particular Convective Continuum Instability (CCI), Thermal Instability (TI), baroclinicity, and mass-slipping metrics within a series of numerical simulations of prominences formed via levitation-condensation. Overall, we find that the formation and evolution of prominence condensations happens in a clearly defined sequence regardless of resolution or background field strength between 3 and 10 Gauss. The CCI governs the slow evolution of plasma prior to the formation of distinct condensations found to be driven by the TI. Evolution of the condensations towards the topological dips of the magnetic flux rope is a consequence of these condensations forming initially outside of pressure balance with their surroundings. From the baroclinicity distributions, smaller-scale rotational motions are inferred within forming and evolving condensations. Upon the complete condensation of a prominence `monolith', the slow descent of this plasma towards lower heights appears consistent with the mass-slippage mechanism driven by episodes of both local current diffusion and magnetic reconnection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源