论文标题

SSDL:自我监督的领域学习以改善面部识别

SSDL: Self-Supervised Domain Learning for Improved Face Recognition

论文作者

Arachchilage, S. W., Izquierdo, E.

论文摘要

由于照明,感测质量,运动模糊和等方面的差异,在不受约束的环境中的面部识别是具有挑战性的。在不同的条件下,个人的面部外观可能会大大变化,从而在火车(来源)和不同的测试(目标)数据之间造成差距。域间隙可能导致直接知识转移从源到目标的绩效水平降低。尽管对域进行了微调,但特定数据可能是一个有效的解决方案,但为所有域收集和注释数据非常昂贵。为此,我们提出了一种自我监管的域学习(SSDL)方案,该方案在未标记数据中挖掘的三胞胎上训练。有效歧视学习的关键因素是选择信息丰富的三胞胎。在最自信的预测的基础上,我们遵循了替代三胞胎开采和自学学习的“易于坚强”的计划。对四个不同基准测试的综合实验表明,SSDL在不同的领域上很好地概括了。

Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual's face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an "easy-to-hard" scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源