论文标题

任何$ n $ photon $ d $ d $ dimensional超牢房

Distinguishing limit of Bell states for any $n$-photon $D$-dimensional hyperentanglement

论文作者

Li, Chunzhen, Li, Yi, Li, Yongnan

论文摘要

贝尔状态测量对于量子信息协议至关重要,但是不可能仅使用线性光学器件来明确地区分多光子中编码的所有钟状状态。有最大数量的杰出钟状状态,即,与众不同的极限对于增加量子通信的通道容量非常重要。在本文中,我们将$ n $ -photon $ d $ d $二维超牢房分为两组。对于$ u $($ g_1 $)的第一组,我们获得了限制$ {n_1} = nd-(n -1)$,可以适用于玻色子和费米子的情况。我们进一步讨论了第二组$ u $($ g_2 $)的任何$ nd $系统的限制$ n $,从而推断至至少$ {d^{n -1}} $ bell状态可以由于贝尔状态的对称性而进行区分。显然,对于那些具有$ n> 2 $的系统的$ {n_1} \ le {n_2} $。最后,我们从理论上设计了一种光学设置,用于钟形旋转,路径和轨道角动量(OAM)的两维超固有性超牢房的测量,并区分15类64个铃铛状态。我们的结果提供了理论基础和实际参考,以增加量子通信的通道能力。

Bell state measurement is crucial to quantum information protocols, but it is impossible to unambiguously distinguish all the Bell states encoded in multi-photon using only linear optics. There is a maximum number of distinguished Bell states, i.e. distinguising limit which is very important for increasing the channel capacity of quantum communications. In this paper, we separate $n$-photon $D$-dimensional hyperentanglement into two groups. For the first group of $U$ ($G_1$), we obtain the limit ${N_1} = nD - (n - 1)$, which can be applied for both bosons' and fermions' cases. We further discuss the limit $N$ for any $nD$ system with the second group of $U$ ($G_2$), inferring that at least ${D^{n - 1}}$ Bell states can be distinguished due to the symmetry of Bell states. Obviously, ${N_1} \le {N_2}$ for those systems with $n>2$. Finally, we theoretically design an optical setup for Bell state measurement of two-photon eight-dimensional hyperentanglement of spin, path and orbital angular momentum (OAM) and distinguish 15 classes of 64 Bell states. Our results provide a theoretical basis and practical reference to increase the channel capacity of the quantum communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源