论文标题

在线性时间内脱节稳定匹配

Disjoint Stable Matchings in Linear Time

论文作者

Ganesh, Aadityan, HV, Vishwa Prakash, Nimbhorkar, Prajakta, Philip, Geevarghese

论文摘要

我们表明,给定一个SM实例G作为输入,我们可以在输入大小中找到最大的成对边缘 - 界限稳定匹配的g。这扩展了两个经典结果: 1。大风 - 夏普利算法,最多可以在线性时间中找到G的G级稳定匹配,并且 2。在双分部分图中找到最大的成对边缘 - 偶会完美匹配(无稳定性要求)的多项式时间算法,通过将König的表征与Tutte的F-Factor算法相结合而获得。 此外,我们还提供了一种算法,以列举给定实例稳定匹配的晶格中的所有最大长度链。该算法将时间多项式在输入大小中进行列举,以列举每个链。我们还在稳定匹配的随机实例中得出了预期的此类链数。

We show that given a SM instance G as input we can find a largest collection of pairwise edge-disjoint stable matchings of G in time linear in the input size. This extends two classical results: 1. The Gale-Shapley algorithm, which can find at most two ("extreme") pairwise edge-disjoint stable matchings of G in linear time, and 2. The polynomial-time algorithm for finding a largest collection of pairwise edge-disjoint perfect matchings (without the stability requirement) in a bipartite graph, obtained by combining König's characterization with Tutte's f-factor algorithm. Moreover, we also give an algorithm to enumerate all maximum-length chains of disjoint stable matchings in the lattice of stable matchings of a given instance. This algorithm takes time polynomial in the input size for enumerating each chain. We also derive the expected number of such chains in a random instance of Stable Matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源