论文标题

通过分层调度的广义相互信息最大化的LDPC代码的量化解码

Generalized Mutual Information-Maximizing Quantized Decoding of LDPC Codes with Layered Scheduling

论文作者

Kang, Peng, Cai, Kui, He, Xuan, Li, Shuangyang, Yuan, Jinhong

论文摘要

在本文中,我们通过使用简单的映射和固定点的添加来提出一个量化低密度平等检查(LDPC)代码的相互信息最大化(MIM)量化解码的框架。我们的解码方法是通用的,因为它可以应用于具有任意程度分布的LDPC代码,并且可以根据信念传播(BP)算法或Min-SUM(MS)算法来实现。特别是,我们建议MIM密度演化(MIM-DE)为节点更新构建查找表(LUTS)。讨论了计算复杂性和内存要求,并将其与LUT解码器变体进行了比较。对于具有低延迟要求的应用,我们考虑分层时间表以加速解码准环状LDPC代码的收敛速度。特别是,我们开发了分层的MIM-DE来基于MS算法设计LUTS,从而导致MIM分层量化的MS(MIM-LQMS)解码器。进一步引入了一种优化方法,以减少存储LUT的内存需求。仿真结果表明,MIM量化的解码器的表现优于瀑布区域中最先进的LUT解码器,在加性白色高斯噪声通道上均具有3位和4位精度。对于小型解码迭代,与基准相比,MIM量化的解码器还达到了更快的收敛速度。此外,4位MIM-LQMS解码器可以在AWGN通道和快速褪色的通道上,在中度到高的SNR区域内的0.3 dB内浮点分层BP解码器的误差性能。

In this paper, we propose a framework of the mutual information-maximizing (MIM) quantized decoding for low-density parity-check (LDPC) codes by using simple mappings and fixed-point additions. Our decoding method is generic in the sense that it can be applied to LDPC codes with arbitrary degree distributions, and can be implemented based on either the belief propagation (BP) algorithm or the min-sum (MS) algorithm. In particular, we propose the MIM density evolution (MIM-DE) to construct the lookup tables (LUTs) for the node updates. The computational complexity and memory requirements are discussed and compared to the LUT decoder variants. For applications with low-latency requirement, we consider the layered schedule to accelerate the convergence speed of decoding quasi-cyclic LDPC codes. In particular, we develop the layered MIM-DE to design the LUTs based on the MS algorithm, leading to the MIM layered quantized MS (MIM-LQMS) decoder. An optimization method is further introduced to reduce the memory requirement for storing the LUTs. Simulation results show that the MIM quantized decoders outperform the state-of-the-art LUT decoders in the waterfall region with both 3-bit and 4-bit precision over the additive white Gaussian noise channels. For small decoding iterations, the MIM quantized decoders also achieve a faster convergence speed compared to the benchmarks. Moreover, the 4-bit MIM-LQMS decoder can approach the error performance of the floating-point layered BP decoder within 0.3 dB in the moderate-to-high SNR regions, over both the AWGN channels and the fast fading channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源