论文标题

FRENET空间长期计划的端到端深入强化学习方法

An End-to-end Deep Reinforcement Learning Approach for the Long-term Short-term Planning on the Frenet Space

论文作者

Moghadam, Majid, Alizadeh, Ali, Tekin, Engin, Elkaim, Gabriel Hugh

论文摘要

由于预测其他道路使用者的行为,环境的多样性以及交通相互作用的复杂性的并发症,战术决策和战略运动计划是具有挑战性的。本文介绍了一种新颖的端到端连续的深度强化学习方法,以实现自动驾驶汽车的决策和运动计划。我们第一次在FRENET空间上定义了状态和动作空间,以使驾驶行为的变化少于周围演员的动态和交通交互。该代理接收到过去车辆过去轨迹的时间序列数据,并沿时间通道应用卷积神经网络以提取主链中的特征。该算法在FRENET框架上生成连续的时空轨迹,以进行反馈控制器的跟踪。与常用的基线相比,卡拉的广泛的高保真高速公路模拟表明了所提出的方法的优越性,并在各种交通情况下进行了离散的强化学习。此外,通过对1000个随机生成的测试方案进行更全面的性能评估,确认了该方法的优势。

Tactical decision making and strategic motion planning for autonomous highway driving are challenging due to the complication of predicting other road users' behaviors, diversity of environments, and complexity of the traffic interactions. This paper presents a novel end-to-end continuous deep reinforcement learning approach towards autonomous cars' decision-making and motion planning. For the first time, we define both states and action spaces on the Frenet space to make the driving behavior less variant to the road curvatures than the surrounding actors' dynamics and traffic interactions. The agent receives time-series data of past trajectories of the surrounding vehicles and applies convolutional neural networks along the time channels to extract features in the backbone. The algorithm generates continuous spatiotemporal trajectories on the Frenet frame for the feedback controller to track. Extensive high-fidelity highway simulations on CARLA show the superiority of the presented approach compared with commonly used baselines and discrete reinforcement learning on various traffic scenarios. Furthermore, the proposed method's advantage is confirmed with a more comprehensive performance evaluation against 1000 randomly generated test scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源