论文标题
使用基于注意的Yolov4框架自动检测心脏室,从胎儿超声心动图的四腔视图
Automatic Detection of Cardiac Chambers Using an Attention-based YOLOv4 Framework from Four-chamber View of Fetal Echocardiography
论文作者
论文摘要
超声心动图是一种强大的产前检查工具,用于早期诊断胎儿先天性心脏病(CHD)。四腔(FC)视图是超声心动图图像中至关重要且易于访问的超声(US)图像。 FC观点的自动分析对CHD的早期诊断产生了重大贡献。自动分析胎儿FC视图的第一步是在美国图像中找到胎儿四个关键心脏的心脏。但是,由于几个关键因素,例如美国图像中的众多斑点,胎儿心脏室的大小和未固定位置,以及由于心脏室相似性引起的,这是一项极具挑战性的任务。这些因素阻碍了捕获鲁棒和歧视性特征的过程,从而破坏了胎儿心脏解剖室精确定位。因此,我们首先提出一个多阶段残留混合注意模块(MRHAM)来改善特征学习。然后,我们提出了改进的Yolov4检测模型,即Mrham-Yolov4-Slim。特别是,在MRHAM-YOLOV4-SLIM的骨架中,剩余的身份映射被MRHAM取代,并准确地定位了胎儿FC的四个重要室。广泛的实验表明,我们提出的方法的表现优于当前最新方法,包括0.919的精度,0.971的召回,F1得分为0.944,地图为0.953和每秒框架(FPS)43。
Echocardiography is a powerful prenatal examination tool for early diagnosis of fetal congenital heart diseases (CHDs). The four-chamber (FC) view is a crucial and easily accessible ultrasound (US) image among echocardiography images. Automatic analysis of FC views contributes significantly to the early diagnosis of CHDs. The first step to automatically analyze fetal FC views is locating the fetal four crucial chambers of heart in a US image. However, it is a greatly challenging task due to several key factors, such as numerous speckles in US images, the fetal cardiac chambers with small size and unfixed positions, and category indistinction caused by the similarity of cardiac chambers. These factors hinder the process of capturing robust and discriminative features, hence destroying fetal cardiac anatomical chambers precise localization. Therefore, we first propose a multistage residual hybrid attention module (MRHAM) to improve the feature learning. Then, we present an improved YOLOv4 detection model, namely MRHAM-YOLOv4-Slim. Specially, the residual identity mapping is replaced with the MRHAM in the backbone of MRHAM-YOLOv4-Slim, accurately locating the four important chambers in fetal FC views. Extensive experiments demonstrate that our proposed method outperforms current state-of-the-art, including the precision of 0.919, the recall of 0.971, the F1 score of 0.944, the mAP of 0.953, and the frames per second (FPS) of 43.