论文标题

在多拷贝环境中,在当地限制下歧视量子状态

Discrimination of quantum states under locality constraints in the many-copy setting

论文作者

Cheng, Hao-Chung, Winter, Andreas, Yu, Nengkun

论文摘要

我们研究了在多拷贝情况下的局部测量受限的正交状态之间正交状态之间的量子假设检验。为了通过本地操作和经典通信(LOCC)操作来测试任意多部分纠缠纯状态,以其正交补体状态,我们证明,最佳平均误差概率始终在副本数量上呈指数衰减。其次,我们为LOCC操作提供了足够的条件,可以实现与正方托管(PPT)操作相同的性能。我们进一步表明,测试最大纠缠的状态,以与其正交补体和测试极端沃纳州均符合上述条件。因此,我们确定了最佳平均误差概率,I型和II型错误之间的最佳权衡以及相关的Chernoff,Chernoff,Stein,Hoeffding和强烈的匡威指数的明确表达式。 然后,我们通过提供从不可扩展的产品基础(UPB)构建的一对状态,显示可分离(SEP)和PPT操作之间的无限渐近分离。量子状态可以通过PPT操作完美区分,而具有SEP操作的最佳误差概率则允许指数下限。在技​​术方面,我们通过提供众所周知的陈述的定量版本,即UPBS的张量是UPB。

We study quantum hypothesis testing between orthogonal states under restricted local measurements in the many-copy scenario. For testing arbitrary multipartite entangled pure state against its orthogonal complement state via the local operation and classical communication (LOCC) operation, we prove that the optimal average error probability always decays exponentially in the number of copies. Second, we provide a sufficient condition for the LOCC operations to achieve the same performance as the positive-partial-transpose (PPT) operations. We further show that testing a maximally entangled state against its orthogonal complement and testing extremal Werner states both fulfill the above-mentioned condition. Hence, we determine the explicit expressions for the optimal average error probability, the optimal trade-off between the type-I and type-II errors, and the associated Chernoff, Stein, Hoeffding, and strong converse exponents. Then, we show an infinite asymptotic separation between the separable (SEP) and PPT operations by providing a pair of states constructed from an unextendible product basis (UPB). The quantum states can be distinguished perfectly by PPT operations, while the optimal error probability, with SEP operations, admits an exponential lower bound. On the technical side, we prove this result by providing a quantitative version of the well-known statement that the tensor product of UPBs is a UPB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源