论文标题
基于铁的超导体中持续的希格斯模式的光量子控制
Light Quantum Control of Persisting Higgs Modes in Iron-Based Superconductors
论文作者
论文摘要
希格斯机制,即量子真空的自发对称性破坏,是一种跨学科原理,可以普遍理解从超导性到磁性的深色能量,反物质和量子材料。然而,由于电荷密度波动的竞争,一波段超导体(SC)中的希格斯模式目前正在争议。 Terahertz(THZ)激光脉冲可控制的独特的希格斯模式可以通过强{\ em Interband}库仑相互作用在多波段,非常规SC中出现,但尚待访问。在这里,我们既发现并证明了基于铁的高温超导体中这种集体模式的量子控制。使用两个脉冲,相干Thz光谱,我们观察到一个可调且相干的2 $δ_ {\ Mathrm {sc}} $幅度振幅在此SC中,耦合的下层和上限耦合。振幅模式振荡在THZ驱动场上的非线性依赖性与任何一个波段和常规的SC结果不同:我们观察到共振强度的非线性变化很大,但具有持久的模式频率。我们认为,这一结果为通过强带相干相互作用的电子和孔振幅模式之间的瞬时耦合提供了令人信服的证据。为了支持这种情况,我们在不调用额外的混乱或声子的情况下对混合Higgs机制进行量子动力学建模。除了区分集体模式和电荷波动外,多频道SC的光量子控制还可以扩展以探测和操纵不同量子材料中的多体纠缠和隐藏对称性。
The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Yet, Higgs modes in one-band superconductors (SCs) are currently under debate due to their competition with charge-density fluctuations. A distinct Higgs mode, controllable by terahertz (THz) laser pulses, can arise in multi-band, unconventional SCs via strong {\em interband} Coulomb interaction, but is yet to be accessed. Here we both discover and demonstrate quantum control of such collective mode in iron-based high-temperature superconductors. Using two-pulse, phase coherent THz spectroscopy, we observe a tunable and coherent 2$Δ_{\mathrm{SC}}$ amplitude oscillation of the complex order parameter in such SC with coupled lower and upper bands. The nonlinear dependence of the amplitude mode oscillations on the THz driving fields is distinct from any one-band and conventional SC results: we observe a large nonlinear change of resonance strength, yet with a persisting mode frequency. We argue that this result provides compelling evidence for a transient coupling between the electron and hole amplitude modes via strong interband coherent interaction. To support this scenario, we perform quantum kinetic modeling of a hybrid Higgs mechanism without invoking extra disorder or phonons. In addition to distinguishing between collective modes and charge fluctuations, the light quantum control of multiband SCs can be extended to probe and manipulate many-body entanglement and hidden symmetries in different quantum materials.