论文标题
塑造气体:通过可解释的机器学习,了解暗物质光环中的气体形状
SHAPing the Gas: Understanding Gas Shapes in Dark Matter Haloes with Interpretable Machine Learning
论文作者
论文摘要
暗物质和气体分布的非球形形状引入了影响星系组和簇的可观察质量关系以及选择功能的系统不确定性。然而,三轴气体分布取决于光环形成历史和男性物理学的非线性物理过程,这对于准确的建模很具有挑战性。在这项研究中,我们探索了一种机器学习方法,用于建模气体形状对暗物质和男性气质特性的依赖性。借助来自Illustristng流体动力学宇宙学模拟的数据,我们开发了一种机器学习管道,该管道应用了\ pkg {Xgboost},这是梯度增强决策树的实现,以预测光晕特性中气体形状的径向曲线。我们表明\ pkg {xgboost}模型可以准确预测暗物质光环中的气体形状曲线。我们还使用\ pkg {shap}探索模型可解释性,该方法识别了不同的晕半径上最预测性的属性。我们发现,男性核心中最能预测的气体形状,而暗物质形状是光晕郊区的主要预测因子。这项工作证明了在多波长宇宙学调查时代,可解释的机器学习在建模暗物质光环的可观察性能中的力量。
The non-spherical shapes of dark matter and gas distributions introduce systematic uncertainties that affect observable-mass relations and selection functions of galaxy groups and clusters. However, the triaxial gas distributions depend on the non-linear physical processes of halo formation histories and baryonic physics, which are challenging to model accurately. In this study we explore a machine learning approach for modelling the dependence of gas shapes on dark matter and baryonic properties. With data from the IllustrisTNG hydrodynamical cosmological simulations, we develop a machine learning pipeline that applies \pkg{XGBoost}, an implementation of gradient boosted decision trees, to predict radial profiles of gas shapes from halo properties. We show that \pkg{XGBoost} models can accurately predict gas shape profiles in dark matter haloes. We also explore model interpretability with \pkg{SHAP}, a method that identifies the most predictive properties at different halo radii. We find that baryonic properties best predict gas shapes in halo cores, whereas dark matter shapes are the main predictors in the halo outskirts. This work demonstrates the power of interpretable machine learning in modelling observable properties of dark matter haloes in the era of multi-wavelength cosmological surveys.