论文标题

根据$ H_0 $张力和LSS数据,早期修改的重力

Early modified gravity in light of the $H_0$ tension and LSS data

论文作者

Braglia, Matteo, Ballardini, Mario, Finelli, Fabio, Koyama, Kazuya

论文摘要

我们提出了一个由标量场$σ$组成的早期修饰引力(EMG)的模型,该模型与$ M^2 _ {\ rm pl}+ξσ^2 $的RICCI曲率与RICCI曲率进行非微耦合,并在cosmological standment and coss coss cosem cosim cosiviate $ h _ _0 $ h_0 $ h_0 $ h_0 $ h_0各向异性和重子声学振荡(BAO)数据。在这个模型中,由于与非相关性物质的耦合,在辐射时代深处冻结的标量场围绕物质平等的红移。我们在这里认为的小有效质量是由四分之一的电势引起的,然后将标量场降低到其最小值$σ= 0 $的最低振荡中,导致早期的重力强度较弱,并自然恢复了与实验室和太阳能系统测试的一致性。我们分析了具有正$ξ$的EMG的能力,以适应当前的宇宙学观察,并将我们的结果与案例进行比较,而没有有效的质量,并与$ξ= 0 $的流行早期的深色能量模型进行了比较。我们表明,EMG与$λ\ sim \ Mathcal {o}({\ rm ev}^4/m _ {\ rm pl}^4)$的emg相结合的顺序均可大大减轻$ h_0 $张力。

We present a model of Early Modified Gravity (EMG) consisting in a scalar field $σ$ with a non-minimal coupling to the Ricci curvature of the type $M^2_{\rm pl}+ξσ^2$ plus a cosmological constant and a small effective mass and demonstrate its ability to alleviate the $H_0$ tension while providing a good fit to Cosmic Microwave Background (CMB) anisotropies and Baryon Acoustic Oscillations (BAO) data. In this model the scalar field, frozen deep in the radiation era, grows around the redshift of matter-radiation equality because of the coupling to non-relativistic matter. The small effective mass, which we consider here as induced by a quartic potential, then damps the scalar field into coherent oscillations around its minimum at $σ=0$, leading to a weaker gravitational strength at early times and naturally recovering the consistency with laboratory and Solar System tests of gravity. We analyze the capability of EMG with positive $ξ$ to fit current cosmological observations and compare our results to the case without an effective mass and to the popular early dark energy models with $ξ=0$. We show that EMG with a quartic coupling of the order of $λ\sim\mathcal{O}({\rm eV}^4/M_{\rm pl}^4)$ can substantially alleviate the $H_0$ tension also when the full shape of the matter power spectrum is included in the fit in addition to CMB and Supernovae (SN) data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源