论文标题

用于点云分析的神经网络的重新校准

Recalibration of Neural Networks for Point Cloud Analysis

论文作者

Sarasua, Ignacio, Poelsterl, Sebastian, Wachinger, Christian

论文摘要

空间和频道重新校准已成为计算机视觉中的强大概念。它们捕获长期依赖关系的能力对于那些提取本地特征(例如CNN)的网络特别有用。尽管重新校准已被广泛研究以进行图像分析,但尚未在形状表示上使用。在这项工作中,我们在3D点云的深神经网络上介绍了重新校准模块。我们提出了一组重新校准块,以扩展挤压和激发块,并可以将其添加到任何网络中以进行3D点云分析,该网络通过层次结合了来自多个本地社区的特征来构建全局描述符。我们运行两组实验来验证我们的方法。首先,我们通过将它们纳入三个最先进的网络进行3D点云分析来证明我们提出的模块的好处和多功能性:PointNet ++,DGCNN和RSCNN。我们在两个任务上评估了每个网络:ModelNet40上的对象分类,以及Shapenet上的对象部分分割。我们的结果表明,与基线方法相比,ModelNet40的准确性高达1%。在第二组实验中,我们研究了重新校准块对阿尔茨海默氏病(AD)诊断的好处。我们的结果表明,我们所提出的方法诊断AD的准确性提高了2%,一致性指数增加了2.3%,以预测与事实分析的AD发作。结论,重新校准提高了点云体系结构的准确性,而最少会增加参数的数量。

Spatial and channel re-calibration have become powerful concepts in computer vision. Their ability to capture long-range dependencies is especially useful for those networks that extract local features, such as CNNs. While re-calibration has been widely studied for image analysis, it has not yet been used on shape representations. In this work, we introduce re-calibration modules on deep neural networks for 3D point clouds. We propose a set of re-calibration blocks that extend Squeeze and Excitation blocks and that can be added to any network for 3D point cloud analysis that builds a global descriptor by hierarchically combining features from multiple local neighborhoods. We run two sets of experiments to validate our approach. First, we demonstrate the benefit and versatility of our proposed modules by incorporating them into three state-of-the-art networks for 3D point cloud analysis: PointNet++, DGCNN, and RSCNN. We evaluate each network on two tasks: object classification on ModelNet40, and object part segmentation on ShapeNet. Our results show an improvement of up to 1% in accuracy for ModelNet40 compared to the baseline method. In the second set of experiments, we investigate the benefits of re-calibration blocks on Alzheimer's Disease (AD) diagnosis. Our results demonstrate that our proposed methods yield a 2% increase in accuracy for diagnosing AD and a 2.3% increase in concordance index for predicting AD onset with time-to-event analysis. Concluding, re-calibration improves the accuracy of point cloud architectures, while only minimally increasing the number of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源