论文标题
在$(\ infty,n)$的K-Invariants上
On k-invariants for $(\infty, n)$-categories
论文作者
论文摘要
每个$(\ infty,n)$ - 类别可以通过其同型$(m,n)$类别近似。在本文中,我们证明了该塔的连续阶段由K-Invariants分类,类似于古典的后尼科夫塔。我们的证明依赖于对配备K-Invariants的尼科夫型塔后塔的抽象分析,还产生了超过$ \ infty $ operads的代数的K-Invariants的构造,并丰富了$ \ iffty $ - 类别。
Every $(\infty, n)$-category can be approximated by its tower of homotopy $(m, n)$-categories. In this paper, we prove that the successive stages of this tower are classified by k-invariants, analogously to the classical Postnikov tower for spaces. Our proof relies on an abstract analysis of Postnikov-type towers equipped with k-invariants, and also yields a construction of k-invariants for algebras over $\infty$-operads and enriched $\infty$-categories.