论文标题

rllib流量:分布式增强学习是一个数据流问题

RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem

论文作者

Liang, Eric, Wu, Zhanghao, Luo, Michael, Mika, Sven, Gonzalez, Joseph E., Stoica, Ion

论文摘要

增强学习领域(RL)领域的研究人员和从业人员经常利用并行计算,这在过去几年中导致了许多新算法和系统。在本文中,我们重新检查了分布式RL提出的挑战,并尝试通过一个旧想法的镜头进行查看:分布式数据流。我们表明将RL视为数据流问题会导致高度合成和性能的实现。我们提出了Rllib Flow,这是一种用于分布式RL的混合Actor-Dataflow编程模型,并通过在RLLIB(广泛采用的分布式RL库)中移植完整的算法套件来验证其实用性。具体而言,RLLIB流提供了2-9代码在实际生产代码中节省,并在最终用户不可能的多代理算法中启用了多代理算法的组成。开源代码可作为RLLIB的一部分获得,网址为https://github.com/ray-project/ray/ray/ray/tree/master/rllib。

Researchers and practitioners in the field of reinforcement learning (RL) frequently leverage parallel computation, which has led to a plethora of new algorithms and systems in the last few years. In this paper, we re-examine the challenges posed by distributed RL and try to view it through the lens of an old idea: distributed dataflow. We show that viewing RL as a dataflow problem leads to highly composable and performant implementations. We propose RLlib Flow, a hybrid actor-dataflow programming model for distributed RL, and validate its practicality by porting the full suite of algorithms in RLlib, a widely adopted distributed RL library. Concretely, RLlib Flow provides 2-9 code savings in real production code and enables the composition of multi-agent algorithms not possible by end users before. The open-source code is available as part of RLlib at https://github.com/ray-project/ray/tree/master/rllib.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源