论文标题
在受到正交限制的深度限制内核机器中,无监督的分解表示形式的学习
Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints
论文作者
论文摘要
我们介绍了DRKM,这是一种深入的内核方法,用于无监督的数据表示表示。我们建议通过对潜在变量的正交性约束来增强原始的深度限制内核配方,以促进分离,并使得在不首先定义稳定目标的情况下进行优化。在说明基于二次惩罚优化算法的端到端训练程序之后,我们定量评估了所提出的方法在分离特征学习中的有效性。我们在四个基准数据集上证明,这种方法在很少的训练点时,在许多分离指标上的总体上与$β$ -VAE相似,而对随机性和超参数选择的敏感性不如$β$ -VAE。我们还提出了Conder-DRKM训练算法的确定性初始化,可显着提高结果的可重复性。最后,我们通过经验评估和讨论层数在提出的方法中的作用,研究每个层中每个主要成分的影响,并表明下层中的组件充当局部特征检测器,捕获数据分布的广泛趋势,而较深层中的组件则使用以前的层中所学的代表性,使用了以前的代表性,并使用了更准确的更准确的较高的功能。
We introduce Constr-DRKM, a deep kernel method for the unsupervised learning of disentangled data representations. We propose augmenting the original deep restricted kernel machine formulation for kernel PCA by orthogonality constraints on the latent variables to promote disentanglement and to make it possible to carry out optimization without first defining a stabilized objective. After illustrating an end-to-end training procedure based on a quadratic penalty optimization algorithm with warm start, we quantitatively evaluate the proposed method's effectiveness in disentangled feature learning. We demonstrate on four benchmark datasets that this approach performs similarly overall to $β$-VAE on a number of disentanglement metrics when few training points are available, while being less sensitive to randomness and hyperparameter selection than $β$-VAE. We also present a deterministic initialization of Constr-DRKM's training algorithm that significantly improves the reproducibility of the results. Finally, we empirically evaluate and discuss the role of the number of layers in the proposed methodology, examining the influence of each principal component in every layer and showing that components in lower layers act as local feature detectors capturing the broad trends of the data distribution, while components in deeper layers use the representation learned by previous layers and more accurately reproduce higher-level features.