论文标题
乌尔里希(Ulrich)捆绑四倍
Ulrich bundles on cubic fourfolds
论文作者
论文摘要
我们在平滑的立方四倍上表明了6号乌尔里希捆绑包的存在。首先,我们构建了等级6的简单捆绑,作为平滑立方四倍的ACM束的基本修改。这样的E显示为两个Lehn-Lehn-Sorger-Van Straten Sheaves的扩展。然后,我们证明E(1)的一般变形成为乌尔里希。特别是,这表明一般的立方四倍的复杂性6。
We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an E appears as an extension of two Lehn-Lehn-Sorger-van Straten sheaves. Then we prove that a general deformation of E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6.