论文标题
使用强壮和强壮的型关系揭示了与设备无关的随机性,非局部性和纠缠之间的不可通信性
Revealing Incommensurability between Device-Independent Randomness, Nonlocality, and Entanglement using Hardy and Hardy-type Relations
论文作者
论文摘要
通过使用Hardy和Cabello-Liang-Li(CLL)非局部性关系对随机性认证的量化量化的全面处理 - 在两方中提供了两方 - 每个方的两个测量结果 - 每个测量结果(2-2-2)场景两个结果。对于顽固的非局部性,据表明,对于特定的非零值表示的非局部性,耐强度认证的随机性的量不是唯一的,与可认证的随机性的数量与CHSH非倾销性有关。这是因为Hardy非局部性参数的任何指定的非最大值都表征了一组量子极端分布。然后,这将导致一系列可认证的随机性,对应于给定的Hardy参数。另一方面,对于给定数量的CLL非端口,可认证的随机性是唯一的,类似于CHSH非局部性。此外,我们的分析治疗的紧密度评估了耐强义和CLL关系的各自的保证界限,这与他们与基于半定义的基于基于的计算界限的确切一致。有趣的是,发现Hardy和Cll认证的随机性的分析评估的最大可实现界限对于Hardy和Cll非局部性参数的非最大值值可实现。特别是,我们已经表明,即使接近最大2位Cll认证的随机性也可以从非最大值纠缠的纯纯度两分码状态实现,这些状态与Cll非局部参数的小值相对应。因此,这清楚地说明了随机性,非局部性和纠缠之间的定量不可通信。
A comprehensive treatment of the quantification of randomness certified device-independently by using the Hardy and Cabello-Liang-Li (CLL) nonlocality relations is provided in the two parties - two measurements per party - two outcomes per measurement (2-2-2) scenario. For the Hardy nonlocality, it is revealed that for a given amount of nonlocality signified by a particular non-zero value of the Hardy parameter, the amount of Hardy-certifiable randomness is not unique, unlike the way the amount of certifiable randomness is related to the CHSH nonlocality. This is because any specified non-maximal value of Hardy nonlocality parameter characterises a set of quantum extremal distributions. Then this leads to a range of certifiable amounts of randomness corresponding to a given Hardy parameter. On the other hand, for a given amount of CLL-nonlocality, the certifiable randomness is unique, similar to that for the CHSH nonlocality. Furthermore, the tightness of our analytical treatment evaluating the respective guaranteed bounds for the Hardy and CLL relations is demonstrated by their exact agreement with the Semi-Definite-Programming based computed bounds. Interestingly, the analytically evaluated maximum achievable bounds of both Hardy and CLL-certified randomness have been found to be realisable for non-maximal values of the Hardy and CLL nonlocality parameters. In particular, we have shown that even close to the maximum 2 bits of CLL-certified randomness can be realised from non-maximally entangled pure two-qubit states corresponding to small values of the CLL nonlocal parameter. This, therefore, clearly illustrates the quantitative incommensurability between randomness, nonlocality and entanglement.