论文标题
红外图像的多功能驱动的主动轮廓分割模型,强度不同化
Multi-feature driven active contour segmentation model for infrared image with intensity inhomogeneity
论文作者
论文摘要
在许多城市防御应用中,红外(IR)图像细分至关重要,例如行人监视,车辆计数,安全监控等。主动轮廓模型(ACM)是目前使用的图像细分工具之一,但是现有方法仅利用局部或全球单一的特征信息来最大程度地减少ir semplation firffice ficle semplations im image semplys im image sembertions im image sembertions im image semptions im image sembertions im image sembertions im image sembertions im映像。在本文中,我们提出了一个多功能驱动的主动轮廓分割模型,以处理强度不均匀性的IR图像。首先,通过组合由全球平均灰色信息和本地熵,本地标准偏差和梯度信息计算的本地多功能信息来构建的特别设计的签名压力(SPF)函数。然后,我们利用通过局部范围计算的自适应重量系数来调整上述全球项和局部项。接下来,将SPF函数替换为级别设置公式(LSF)以进一步进化。最后,LSF在有限数量的迭代后收敛,并且从相应的收敛结果获得了IR图像分割结果。实验结果表明,在IR测试图像中,所提出的方法以精确率和重叠速率优于最先进的模型。
Infrared (IR) image segmentation is essential in many urban defence applications, such as pedestrian surveillance, vehicle counting, security monitoring, etc. Active contour model (ACM) is one of the most widely used image segmentation tools at present, but the existing methods only utilize the local or global single feature information of image to minimize the energy function, which is easy to cause false segmentations in IR images. In this paper, we propose a multi-feature driven active contour segmentation model to handle IR images with intensity inhomogeneity. Firstly, an especially-designed signed pressure force (SPF) function is constructed by combining the global information calculated by global average gray information and the local multi-feature information calculated by local entropy, local standard deviation and gradient information. Then, we draw upon adaptive weight coefficient calculated by local range to adjust the afore-mentioned global term and local term. Next, the SPF function is substituted into the level set formulation (LSF) for further evolution. Finally, the LSF converges after a finite number of iterations, and the IR image segmentation result is obtained from the corresponding convergence result. Experimental results demonstrate that the presented method outperforms the state-of-the-art models in terms of precision rate and overlapping rate in IR test images.