论文标题

完全自动化的二尖瓣流入多普勒分析使用深度学习

Fully Automated Mitral Inflow Doppler Analysis Using Deep Learning

论文作者

Elwazir, Mohamed Y., Akkus, Zeynettin, Oguz, Didem, Oh, Jae K.

论文摘要

超声心动图(ECHO)是心脏病专家诊断武术中必不可少的工具。迄今为止,几乎所有的超声心动图参数都需要经验丰富的超声心动图学家进行耗时的手动标记和测量,并表现出显着的可变性,这是由于Echo图像的嘈杂和充满人工的性质。例如,二尖瓣流入(MI)多普勒用于评估左心室(LV)舒张功能,这对于区分不同心脏疾病至关重要。在当前的工作中,我们提出了一个全自动的工作流程,该工作流利用深度学习为a)在回声研究中获得的MI多普勒图像标记,b)检测MI多普勒信号的包络,c)提取早期和晚期备案(E和A波(E和A波)流量速度和E-Wave降低时间。我们在140名患者的5544张图像上训练了多种卷积神经网络(CNN)模型,用于预测24个图像类别,包括MI多普勒图像,并在40名患者的1737张图像上获得了0.97的总体准确性。自动E和A波速度与操作员测量值分别显示出极好的相关性(分别为Pearson R 0.99和0.98)和Bland Altman一致性(分别为0.06和0.05 m/s的平均差异0.06和0.05 m/s,SD 0.03)与操作员的测量值。减速时间也显示出良好但较低的相关性(Pearson R 0.82)和Bland-Altman一致性(平均差异:34.1ms,SD:30.9ms)。这些结果表明,多普勒超声心动图测量自动化以及完全自动化的超声心动图测量套件的希望。

Echocardiography (echo) is an indispensable tool in a cardiologist's diagnostic armamentarium. To date, almost all echocardiographic parameters require time-consuming manual labeling and measurements by an experienced echocardiographer and exhibit significant variability, owing to the noisy and artifact-laden nature of echo images. For example, mitral inflow (MI) Doppler is used to assess left ventricular (LV) diastolic function, which is of paramount clinical importance to distinguish between different cardiac diseases. In the current work we present a fully automated workflow which leverages deep learning to a) label MI Doppler images acquired in an echo study, b) detect the envelope of MI Doppler signal, c) extract early and late filing (E and A wave) flow velocities and E-wave deceleration time from the envelope. We trained a variety of convolutional neural networks (CNN) models on 5544 images of 140 patients for predicting 24 image classes including MI Doppler images and obtained overall accuracy of 0.97 on 1737 images of 40 patients. Automated E and A wave velocity showed excellent correlation (Pearson R 0.99 and 0.98 respectively) and Bland Altman agreement (mean difference 0.06 and 0.05 m/s respectively and SD 0.03 for both) with the operator measurements. Deceleration time also showed good but lower correlation (Pearson R 0.82) and Bland-Altman agreement (mean difference: 34.1ms, SD: 30.9ms). These results demonstrate feasibility of Doppler echocardiography measurement automation and the promise of a fully automated echocardiography measurement package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源