论文标题

自主驾驶中基于预测的避免碰撞的可及性

Prediction-Based Reachability for Collision Avoidance in Autonomous Driving

论文作者

Li, Anjian, Sun, Liting, Zhan, Wei, Tomizuka, Masayoshi, Chen, Mo

论文摘要

安全是自动驾驶的重要话题,因为任何碰撞都可能对人造成严重伤害和财产损失。 Hamilton-Jacobi(HJ)可达性是一种正式方法,可验证多代理交互的安全性,并为避免碰撞提供了安全控制器。但是,由于对汽车未来行为的最坏情况的最糟糕的假设可能会导致过多的保守主义,因此车辆的正常操作受到严重阻碍。在本文中,我们利用轨迹预测的力量,并提出一个基于预测的可及性框架来计算安全控制器。我们不总是假设最坏的情况,而是将汽车的行为聚集到多种驾驶模式中,例如左转或右转。在每种模式下,基于可及性的安全控制器的设计基于不太保守的动作集。对于在线实施,我们首先利用轨迹预测和提出的模式分类器来预测可能的模式,然后部署相应的安全控制器。通过在T交流和8向回旋处中的模拟,我们证明了我们基于预测的可及性方法在很大程度上避免了两辆相互作用的汽车之间的碰撞,并减少了安全控制器将汽车原始操作带来的保守主义。

Safety is an important topic in autonomous driving since any collision may cause serious injury to people and damage to property. Hamilton-Jacobi (HJ) Reachability is a formal method that verifies safety in multi-agent interaction and provides a safety controller for collision avoidance. However, due to the worst-case assumption on the cars future behaviours, reachability might result in too much conservatism such that the normal operation of the vehicle is badly hindered. In this paper, we leverage the power of trajectory prediction and propose a prediction-based reachability framework to compute safety controllers. Instead of always assuming the worst case, we cluster the car's behaviors into multiple driving modes, e.g. left turn or right turn. Under each mode, a reachability-based safety controller is designed based on a less conservative action set. For online implementation, we first utilize the trajectory prediction and our proposed mode classifier to predict the possible modes, and then deploy the corresponding safety controller. Through simulations in a T-intersection and an 8-way roundabout, we demonstrate that our prediction-based reachability method largely avoids collision between two interacting cars and reduces the conservatism that the safety controller brings to the car's original operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源