论文标题

在位置和扭矩约束下进行水下操纵的强化学习控制方法

A reinforcement learning control approach for underwater manipulation under position and torque constraints

论文作者

Carlucho, Ignacio, De Paula, Mariano, Acosta, Gerardo G., Barbalata, Corina

论文摘要

在海洋手术中,水下操纵器发挥了原始作用。但是,由于动态模型中的不确定性和由环境引起的干扰,低级控制方法需要适应更改的功能。此外,在位置和扭矩约束下,控制系统的要求大大增加了。增强学习是一种数据驱动的控制技术,可以在不需要模型的情况下学习复杂的控制策略。这些类型的代理的学习能力允许对手术条件的变化具有极大的适应性。在本文中,我们介绍了一种新颖的增强学习低级控制器,用于在扭矩和位置约束下的水下操纵器的位置控制。强化学习代理基于使用传感器读数作为状态信息的参与者批判性架构。使用Reach Alpha 5水下操纵器的仿真结果显示了拟议的控制策略的优势。

In marine operations underwater manipulators play a primordial role. However, due to uncertainties in the dynamic model and disturbances caused by the environment, low-level control methods require great capabilities to adapt to change. Furthermore, under position and torque constraints the requirements for the control system are greatly increased. Reinforcement learning is a data driven control technique that can learn complex control policies without the need of a model. The learning capabilities of these type of agents allow for great adaptability to changes in the operative conditions. In this article we present a novel reinforcement learning low-level controller for the position control of an underwater manipulator under torque and position constraints. The reinforcement learning agent is based on an actor-critic architecture using sensor readings as state information. Simulation results using the Reach Alpha 5 underwater manipulator show the advantages of the proposed control strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源