论文标题

广义差异持续学习

Generalized Variational Continual Learning

论文作者

Loo, Noel, Swaroop, Siddharth, Turner, Richard E.

论文摘要

不断学习以在线方式涉及有关新任务和数据集的培训模型。一系列的研究将概率正则化用于持续学习,这种静脉的两种主要方法是在线弹性重量整合(在线EWC)和变异持续学习(VCL)。 VCL采用变异推理,在其他环境中,通过应用似然感应来改善这些推论。我们表明,将此修改应用于VCL将在线恢复为限制案例,从而可以在两种方法之间进行插值。我们称一般算法通用VCL(GVCL)。为了减轻VI观察到的过度修复效果,我们从常见的多任务结构,具有特定于任务膜层的神经网络中汲取灵感,并发现这种增加会带来显着的性能增长,特别是用于变异方法的性能。在小型数据制度中,GVCL强烈胜过现有的基线。在较大的数据集中,具有胶片层的GVCL优于现有基准的精度优于现有基准,同时还提供了更好的校准。

Continual learning deals with training models on new tasks and datasets in an online fashion. One strand of research has used probabilistic regularization for continual learning, with two of the main approaches in this vein being Online Elastic Weight Consolidation (Online EWC) and Variational Continual Learning (VCL). VCL employs variational inference, which in other settings has been improved empirically by applying likelihood-tempering. We show that applying this modification to VCL recovers Online EWC as a limiting case, allowing for interpolation between the two approaches. We term the general algorithm Generalized VCL (GVCL). In order to mitigate the observed overpruning effect of VI, we take inspiration from a common multi-task architecture, neural networks with task-specific FiLM layers, and find that this addition leads to significant performance gains, specifically for variational methods. In the small-data regime, GVCL strongly outperforms existing baselines. In larger datasets, GVCL with FiLM layers outperforms or is competitive with existing baselines in terms of accuracy, whilst also providing significantly better calibration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源