论文标题

带有卷积神经网络的光度红移估计:Netz

Photometric Redshift Estimation with a Convolutional Neural Network: NetZ

论文作者

Schuldt, S., Suyu, S. H., Cañameras, R., Taubenberger, S., Meinhardt, T., Leal-Taixé, L., Hsieh, B. C.

论文摘要

星系的红移是几乎所有所有外乳术研究所需的关键属性。由于光谱红移需要额外的望远镜和人力资源,因此数百万的星系是没有光谱红移的。因此,至关重要的是,具有基于其光度特性(所谓的照片-Y $ z $)估算星系红移的方法。我们开发了Netz,这是一种使用卷积神经网络(CNN)来预测基于星系图像的照片-$ z $的新方法,与以前的方法相反,与以前的方法相比,该方法通常仅使用没有图像的星系的集成光度法。我们将五个不同过滤器中的Hyper Soprime-CAM Subaru战略计划(HSC SSP)中的数据用作培训数据。整个红移范围内0到4之间的网络总体上表现良好,尤其是在高$ z $范围内的网络比相同数据上的其他方法更好。我们获得了准确性$ | z_ \ text {pred} -z_ \ text {ref} | $σ= 0.12 $(68%置信区间),CNN适用于所有星系类型的CNN在0到$ \ sim $ 4的红移范围内平均所有星系平均。通过局限于较小的红移范围或发光的红色星系(LRGS),我们发现了进一步值得注意的改进。我们在此处发布了超过3400万张新照片-Y $ Z $值。这表明新方法非常简单快速地应用,并且重要的是,仅涵盖了仅受可用培训数据限制的宽红移范围。它广泛适用于成像调查,尤其是即将进行的调查,例如鲁宾天文台遗产对空间和时间的调查,该调查将提供数十亿个星系的图像,其图像质量与HSC相似。

The redshifts of galaxies are a key attribute that is needed for nearly all extragalactic studies. Since spectroscopic redshifts require additional telescope and human resources, millions of galaxies are known without spectroscopic redshifts. Therefore, it is crucial to have methods for estimating the redshift of a galaxy based on its photometric properties, the so-called photo-$z$. We developed NetZ, a new method using a Convolutional Neural Network (CNN) to predict the photo-$z$ based on galaxy images, in contrast to previous methods which often used only the integrated photometry of galaxies without their images. We use data from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) in five different filters as training data. The network over the whole redshift range between 0 and 4 performs well overall and especially in the high-$z$ range better than other methods on the same data. We obtain an accuracy $|z_\text{pred}-z_\text{ref}|$ of $σ= 0.12$ (68% confidence interval) with a CNN working for all galaxy types averaged over all galaxies in the redshift range of 0 to $\sim$4. By limiting to smaller redshift ranges or to Luminous Red Galaxies (LRGs), we find a further notable improvement. We publish more than 34 million new photo-$z$ values predicted with NetZ here. This shows that the new method is very simple and fast to apply, and, importantly, covers a wide redshift range limited only by the available training data. It is broadly applicable and beneficial to imaging surveys, particularly upcoming surveys like the Rubin Observatory Legacy Survey of Space and Time which will provide images of billions of galaxies with similar image quality as HSC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源