论文标题
中子皮肤$ r _ {\ rm皮肤}^{48} $从质子+$^{48} $ ca散射的反应横截面确定
Neutron skin $r_{\rm skin}^{48}$ determined from reaction cross section of proton+$^{48}$Ca scattering
论文作者
论文摘要
{\ bf背景:}使用手性(kyushu)$ g $ -matrix折叠模型,其密度使用GHFB+AMP计算,我们确定了$ r _ {\ rm skin}^{208} = 0.25 $ fm的中心价值的$ c _ { $ e _ {\ rm in} = 40-81 $ mev。高分辨率$ e1 $极化实验($ e1 $ pe)产生$ r _ {\ rm skin}^{48}(e1 {\ rm pe})= 0.14-0.20 $ fm。 $σ_ {\ rm rm} $上的数据可作为$ e _ {\ rm in} $的函数,对于$ p $+$+$^{48} $ ca散射。 {\ bf aim:}我们的目的是从$σ_{\ rm r} $中的中心值确定$ r _ {\ rm skin}^{48} $,对于$ p $+$+$^{48} $ ca ca散射。 {\ bf结果:}至于$^{48} $ ca,我们确定$ r_n(e1 {\ rm pe})= 3.56 $ fm,来自中心值0.17fm of $ r _ {\ rm _ {\ rm}电子散射,并评估$ r_m(e1 {\ rm pe})= 3.485 $ fm,来自$ r_n(e1 {\ rm pe})$和$ r_p({\ rm exp})$的电子散射。带有GHFB+AMP密度的折叠模型再现$σ_{\ rm r} $ in $ 23 \ leq e _ {\ rm in} \ leq 25.3 $ meV中的一个 - $σ$ lacte在$ 23 \ leq e _ {\ rm in} \ leq 25.3 $ meV中,小偏差使我们能够将GHFB+AMP密度扩展到$ r_p({\ rm exp})$和$ r_n(e1 {\ rm rmm pe})$的中心值。获得的$σ_ {\ rm rm}(e1 {\ rm pe})$以缩放密度几乎重现$σ_{\ rm rm r} $时$ e _ {\ e _ {\ rm in} = 23-25.3 $ mev,所以$ e _ {\ rm in} $ e _ {\ rm $σ_ {\ rm r}(e1 {\ rm pe})$ in 1- $σ$ of $σ_ {\ rm rm r} $。在$ e _ {\ rm in} = 23-25.3 $ meV中,我们确定$ r_ {m}({\ rm exp})$从$σ_{\ rm rm rm} $的中心值中,并取平均值的平均值。平均值为$ r_ {m}({\ rm exp})= 3.471 $ fm。最终,我们从$ r_ {m}({\ rm exp})({\ rm exp})= 3.471 $ fm和$ r_p({\ rm exp})= 3.385 $ fm fm fm _ {\ rm skin}^{48}({\ rm exp})= 0.146 $ fm。
{\bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{\rm skin}^{208}=0.25$fm from the central values of $σ_{\rm R}$ of p+$^{208}$Pb scattering in $E_{\rm in}=40-81$MeV. The high-resolution $E1$ polarizability experiment ($E1$pE) yields $r_{\rm skin}^{48}(E1{\rm pE}) =0.14-0.20$fm. The data on $σ_{\rm R}$ are available as a function of $E_{\rm in}$ for $p$+$^{48}$Ca scattering. {\bf Aim:} Our aim is to determine $r_{\rm skin}^{48}$ from the central values of $σ_{\rm R}$ for $p$+$^{48}$Ca scattering by using the folding model. {\bf Results:} As for $^{48}$Ca, we determine $r_n(E1{\rm pE})=3.56$fm from the central value 0.17fm of $r_{\rm skin}^{48}(E1{\rm pE})$ and $r_p({\rm EXP})=3.385$fm of electron scattering, and evaluate $r_m(E1{\rm pE})=3.485$fm from the $r_n(E1{\rm pE})$ and the $r_p({\rm EXP})$ of electron scattering. The folding model with GHFB+AMP densities reproduces $σ_{\rm R}$ in $23 \leq E_{\rm in} \leq 25.3$ MeV in one-$σ$ level, but slightly overestimates the central values of $σ_{\rm R}$ there. In $23 \leq E_{\rm in} \leq 25.3$MeV, the small deviation allows us to scale the GHFB+AMP densities to the central values of $r_p({\rm EXP})$ and $r_n(E1{\rm pE})$. The $σ_{\rm R}(E1{\rm pE})$ obtained with the scaled densities almost reproduce the central values of $σ_{\rm R}$ when $E_{\rm in}=23-25.3$MeV, so that the $σ_{\rm R}({\rm GHFB+AMP})$ and the $σ_{\rm R}(E1{\rm pE})$ are in 1-$σ$ of $σ_{\rm R}$ there. In $E_{\rm in}=23-25.3$MeV, we determine the $r_{m}({\rm EXP})$ from the central values of $σ_{\rm R}$ and take the average for the $r_{m}({\rm EXP})$. The averaged value is $r_{m}({\rm EXP})=3.471$fm. Eventually, we obtain $r_{\rm skin}^{48}({\rm EXP})=0.146$fm from $r_{m}({\rm EXP})=3.471$fm and $r_p({\rm EXP})=3.385$fm.