论文标题
免费组扩展类别
Classes of free group extensions
论文作者
论文摘要
在本文中,我们使用核心图确定了不同类别的自由组扩展名。我们表明,每个免费组扩展名$ h \ leq k \ leq f $都有一个基本$ b $,因此相关的尖型形态$γ_{b} \ left(h \ right)\toγ_{b} \ left(h \ weft(h \ weft(h \ right)$)但是,如果我们检查没有基数的图形,则有一个扩展名$ \ weft \ langle b \ rangle \ rangle \ leq \ leq \ left \ left \ langle b,aba^{ - 1} \ rangle <f _ {\ f _ { a,b \ right \}} $相关的图形形态是蚀刻的。
In this paper we identify different classes of free group extension using core graphs. We show that every free group extension $H\leq K\leq F$ has a base $B$ such that the associated pointed graph morphism $Γ_{B}\left(H\right)\toΓ_{B}\left(H\right)$ is onto. But if we examine graphs without base points, there is an extension $\left\langle b\right\rangle \leq\left\langle b,aba^{-1}\right\rangle <F_{\left\{ a,b\right\} }$ such that for every base of $F_{\left\{ a,b\right\} }$ the associated graph morphisms are injective.