论文标题

在波导QUED中对量子光 - 物质相互作用进行建模,并具有时间延迟的反馈:矩阵乘积状态与空间危险的波导模型

Modelling quantum light-matter interactions in waveguide-QED with retardation and a time-delayed feedback: matrix product states versus a space-discretized waveguide model

论文作者

Regidor, Sofia Arranz, Crowder, Gavin, Carmichael, Howard, Hughes, Stephen

论文摘要

我们提出了使用矩阵乘积状态(MPSS)和空间散布的波导(SDW)模型在波导QED系统中建模非马克维亚量子光结合系统的两种不同方法。在描述了两种方法的一般理论和实施之后,我们将这些方法直接比较并将这些方法进行比较,这是在波导指定的三个局部问题上,包括(i)两级系统(tls)与无限(一维的)波动(II)与终止的tls sptimie tls couption tls ii thilesirentirentirentirentirentirentirentirent forderent forderent forderective forderent forderefferdect(i)相关的(一维的)波动(II)。 TLSS在无限波导中耦合。两种方法均显示出在高度非马克维亚政权中有效地对多光子非线性动力学进行建模,我们强调了这些方法在模拟波导QED交互作用的优势和缺点,包括它们在Python,计算运行时间和概念性理解中的实现。我们探索真空动力学以及强烈的光学泵的机制,在这些泵中无法应用弱激发近似。 MPS方法在建模多光子动力学和较长的延迟时间时会更好地缩放,并且明确包含非马克维亚内存效应。相比之下,SDW模型通过空间离散化来解释非马克维亚的效果,并解决马尔可夫运动方程,但严格包括延迟的影响。 SDW模型基于量子光学中最近的碰撞图片的扩展,通过量子轨迹技术解决,并且可以更轻松地添加其他耗散过程,包括芯片衰减和TLS纯dephasing。这些过程的影响直接显示了反馈引起的人口捕获和空间分离的TLS之间的TLS纠缠。

We present two different methods for modelling non-Markovian quantum light-matter interactions in waveguide QED systems, using matrix product states (MPSs) and a space-discretized waveguide (SDW) model. After describing the general theory and implementation of both approaches, we compare and contrast these methods directly on three topical problems of interest in waveguide-QED, including (i) a two-level system (TLS) coupled to an infinite (one-dimensional) waveguide, (ii) a TLS coupled to a terminated waveguide with a time-delayed coherent feedback, and (iii) two spatially separated TLSs coupled within an infinite waveguide. Both approaches are shown to efficiently model multi-photon nonlinear dynamics in highly non-Markovian regimes, and we highlight the advantages and disadvantages of these methods for modelling waveguide QED interactions, including their implementation in Python, computational run times, and ease of conceptual understanding. We explore both vacuum dynamics as well as regimes of strong optical pumping, where a weak excitation approximation cannot be applied. The MPS approach scales better when modelling multi-photon dynamics and long delay times, and explicitly includes non-Markovian memory effects. In contrast, the SDW model accounts for non-Markovian effects through space discretization, and solves Markovian equations of motion, yet rigorously includes the effects of retardation. The SDW model, based on an extension of recent collisional pictures in quantum optics, is solved through quantum trajectory techniques, and can more easily add in additional dissipation processes, including off-chip decay and TLS pure dephasing. The impact of these processes is shown directly on feedback-induced population trapping and TLS entanglement between spatially separated TLSs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源