论文标题
比例使用Omega Baryon Mass和梯度流量尺度和梯度流量尺度上的梯度流动的HISQ动作设置Möbius域壁费。
Scale setting the Möbius Domain Wall Fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales $t_0$ and $w_0$
论文作者
论文摘要
我们使用Omega Baryon质量和梯度流量方法报告了次级量表的测定。计算是在22个$ n_f = 2+1+1 $的合奏中执行的,由MILC和Callat协作产生的高度改进的,交错的海Quark配置。所使用的价夸克动作是在$ t _ {\ rm gf} = 1 $的lattice单元中使用梯度流涂抹后,在这些配置上求解的Möbius域壁壁费。合奏在范围内跨越了四个晶格间距$ 0.06 \ Lessim a \ Lessim 0.15 $ fm,六个在范围内的Pion块$ 130 \ lyseSimm_π\ sillesim 400 $ MEV和多个晶格量。在每个合奏中,计算梯度流量尺度$ T_0/A^2 $和$ W_0/A $和OMEGA BARYON MASS $ AM_Ω$。 The dimensionless product of these quantities is then extrapolated to the continuum and infinite volume limits and interpolated to the physical light, strange and charm quark mass point in the isospin limit, resulting in the determination of $\sqrt{t_0}=0.1422(14)$ fm and $w_0 = 0.1709(11)$ fm with all sources of statistical and systematic uncertainty accounted 为了。该结果的主要不确定性是随机不确定性,这为几个米尔的不确定性提供了清晰的途径,这是布达佩斯 - 梅拉斯·梅尔斯·米尔·瓦珀塔尔(Budapest-Marsesille-Wuppertal)协作最近获得的。
We report on a sub-percent scale determination using the omega baryon mass and gradient-flow methods. The calculations are performed on 22 ensembles of $N_f=2+1+1$ highly improved, rooted staggered sea-quark configurations generated by the MILC and CalLat Collaborations. The valence quark action used is Möbius Domain-Wall fermions solved on these configurations after a gradient-flow smearing is applied with a flowtime of $t_{\rm gf}=1$ in lattice units. The ensembles span four lattice spacings in the range $0.06 \lesssim a \lesssim 0.15$ fm, six pion masses in the range $130 \lesssim m_π\lesssim 400$ MeV and multiple lattice volumes. On each ensemble, the gradient-flow scales $t_0/a^2$ and $w_0/a$ and the omega baryon mass $a m_Ω$ are computed. The dimensionless product of these quantities is then extrapolated to the continuum and infinite volume limits and interpolated to the physical light, strange and charm quark mass point in the isospin limit, resulting in the determination of $\sqrt{t_0}=0.1422(14)$ fm and $w_0 = 0.1709(11)$ fm with all sources of statistical and systematic uncertainty accounted for. The dominant uncertainty in this result is the stochastic uncertainty, providing a clear path for a few-per-mille uncertainty, as recently obtained by the Budapest-Marseille-Wuppertal Collaboration.