论文标题

2D ISING模型中的关键预读

Critical prewetting in the 2d Ising model

论文作者

Ioffe, Dmitry, Ott, Sébastien, Shlosman, Senya, Velenik, Yvan

论文摘要

在本文中,我们在二维ISING模型的上下文中对关键预处理进行了详细的分析。也就是说,我们考虑在$ 2N \ times n $矩形盒中使用二维最近的邻居iSing型号,边界条件诱导批量$+$相位的共存,沿底墙的$ - $相位的一层。强度的外部磁场$ h =λ/n $(对于某些固定的$λ> 0 $)使得$ - $相位不稳定。对于任何$β>β_ {\ rm c} $,我们证明,在$ n^{ - 2/3} $的扩散缩放下,水平和$ n^{ - 1/3} $ ractionally上,将不稳定相位的界面与较大相位的界面分开,使其与较大的相位弱转换为explicit ferrari-spohn expectius ferrari-spohn expemit ferrari-spohn。

In this paper we develop a detailed analysis of critical prewetting in the context of the two-dimensional Ising model. Namely, we consider a two-dimensional nearest-neighbor Ising model in a $2N\times N$ rectangular box with a boundary condition inducing the coexistence of the $+$ phase in the bulk and a layer of $-$ phase along the bottom wall. The presence of an external magnetic field of intensity $h=λ/N$ (for some fixed $λ>0$) makes the layer of $-$ phase unstable. For any $β>β_{\rm c}$, we prove that, under a diffusing scaling by $N^{-2/3}$ horizontally and $N^{-1/3}$ vertically, the interface separating the layer of unstable phase from the bulk phase weakly converges to an explicit Ferrari-Spohn diffusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源