论文标题
通过时频方法的非各向同性超显性空间中偏微分方程的全球解决方案的规律性
Regularity of global solutions of partial differential equations in non isotropic ultradifferentiable spaces via time-frequency methods
论文作者
论文摘要
在本文中,我们研究了具有多项式系数的部分微分方程的规律性,该方程在全球类型的非各向同性Beurling空间中具有多项式系数。我们研究了Gabor和Wigner类型在此类空间中的转化的作用,我们证明了Wigner类型的合适表示可以证明对没有经典性低纤维化属性的运算符类别。
In this paper we study regularity of partial differential equations with polynomial coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We study the action of transformations of Gabor and Wigner type in such spaces and we prove that a suitable representation of Wigner type allows to prove regularity for classes of operators that do not have classical hypoellipticity properties.