论文标题
较高自旋XXZ链中的纠缠熵边界
Entanglement Entropy Bounds in the Higher Spin XXZ Chain
论文作者
论文摘要
我们考虑使用各向异性参数$δ$的Heisenberg xxz spin- $ j $链($ j \ in \ mathbb {n}/2 $)。假设$δ> 2J $,并引入阈值能量$ e_ {k}:= k \ left(1- \ frac {2j}Δ\ right)$,我们表明,双方纠缠熵(EE)属于任何属于能量的国家的国家属于任何频谱的范围,而不是$ e_ {k+e_ { $(2 \ lfloor k/j \ rfloor-2)$。 这概括了Beaud和Warzel以及Abdul-Rahman,Stolz和其中一位作者的先前结果,他们覆盖了$ 1/2 $ $的案例。
We consider the Heisenberg XXZ spin-$J$ chain ($J\in\mathbb{N}/2$) with anisotropy parameter $Δ$. Assuming that $Δ>2J$, and introducing threshold energies $E_{K}:=K\left(1-\frac{2J}Δ\right)$, we show that the bipartite entanglement entropy (EE) of states belonging to any spectral subspace with energy less than $E_{K+1}$ satisfy a logarithmically corrected area law with prefactor $(2\lfloor K/J\rfloor-2)$. This generalizes previous results by Beaud and Warzel as well as Abdul-Rahman, Stolz and one of the authors, who covered the spin-$1/2$ case.