论文标题
使用深度学习网络用于微观病理图像的盲目脱脂
Blind deblurring for microscopic pathology images using deep learning networks
论文作者
论文摘要
人工智能(AI)能力的病理学是数字病理世界中革命性的步骤,并且表现出了提高诊断准确性和效率的巨大希望。然而,散焦和运动模糊可以掩盖组织或细胞特征,从而损害AI算法的准确性和分析图像时的鲁棒性。在本文中,我们展示了一种基于深度学习的方法,可以减轻微观图像的散焦和运动模糊,并输出带有详细细节的更清晰,更清洁的图像,而无需事先了解模糊类型,模糊范围和病理染色。在这种方法中,首先对深度学习分类器进行了训练,以识别图像模糊类型。然后,对两个编码器 - 码头网络进行训练并单独使用或组合使用以删除输入图像。这是一种端到端的方法,不像传统的盲目反卷积方法那样引入瓦楞纸。我们在不同类型的病理标本上测试了我们的方法,并在图像模糊校正方面表现出了出色的表现,并且随后在AI算法的诊断结果上的改善。
Artificial Intelligence (AI)-powered pathology is a revolutionary step in the world of digital pathology and shows great promise to increase both diagnosis accuracy and efficiency. However, defocus and motion blur can obscure tissue or cell characteristics hence compromising AI algorithms'accuracy and robustness in analyzing the images. In this paper, we demonstrate a deep-learning-based approach that can alleviate the defocus and motion blur of a microscopic image and output a sharper and cleaner image with retrieved fine details without prior knowledge of the blur type, blur extent and pathological stain. In this approach, a deep learning classifier is first trained to identify the image blur type. Then, two encoder-decoder networks are trained and used alone or in combination to deblur the input image. It is an end-to-end approach and introduces no corrugated artifacts as traditional blind deconvolution methods do. We test our approach on different types of pathology specimens and demonstrate great performance on image blur correction and the subsequent improvement on the diagnosis outcome of AI algorithms.