论文标题

混合两个私人图像时Instahide的样本复杂性

InstaHide's Sample Complexity When Mixing Two Private Images

论文作者

Huang, Baihe, Song, Zhao, Tao, Runzhou, Yin, Junze, Zhang, Ruizhe, Zhuo, Danyang

论文摘要

训练神经网络通常需要大量敏感培训数据,以及如何保护培训数据的隐私,因此已成为深度学习研究的关键主题。 Instahide是一种保护培训数据隐私的最先进计划,对测试准确性的影响只有很小的影响,其安全性已成为一个显着的问题。在本文中,我们系统地研究了对Instahide的最新攻击,并提出了一个统一的框架来理解和分析这些攻击。我们发现现有的攻击要么没有可证明的保证,要么只能恢复单个私人图像。在当前的Instahide挑战设置中,每个Instahide图像都是两个私人图像的混合物,我们提出了一种新算法,以恢复具有可证明的保证和最佳样品复杂性的所有私人图像。此外,我们还为检索所有Instahide图像提供了计算硬度结果。我们的结果表明,即使在混合两个私人图像时,Instahide在理论上不是在理论上安全,而是在最坏的情况下确保计算的安全。

Training neural networks usually require large numbers of sensitive training data, and how to protect the privacy of training data has thus become a critical topic in deep learning research. InstaHide is a state-of-the-art scheme to protect training data privacy with only minor effects on test accuracy, and its security has become a salient question. In this paper, we systematically study recent attacks on InstaHide and present a unified framework to understand and analyze these attacks. We find that existing attacks either do not have a provable guarantee or can only recover a single private image. On the current InstaHide challenge setup, where each InstaHide image is a mixture of two private images, we present a new algorithm to recover all the private images with a provable guarantee and optimal sample complexity. In addition, we also provide a computational hardness result on retrieving all InstaHide images. Our results demonstrate that InstaHide is not information-theoretically secure but computationally secure in the worst case, even when mixing two private images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源