论文标题

一维多体系统中的通用三方纠缠

Universal tripartite entanglement in one-dimensional many-body systems

论文作者

Zou, Yijian, Siva, Karthik, Soejima, Tomohiro, Mong, Roger S. K., Zaletel, Michael P.

论文摘要

由全息图中的猜想激励,将纯化的纠缠和反映的熵与纠缠楔横截面有关,我们介绍了两种相关的三方纠缠$ g $和$ h $的非负相关措施。我们证明了结构定理,该定理表明,具有非零$ g $或$ h $具有非平凡三方纠缠的状态。然后,我们确定在1D中,这些三方纠缠措施是普遍数量,仅取决于新兴的低能理论。对于一个间隙的系统,我们认为$ g \ neq 0 $和$ h = 0 $或$ g = h = 0 $,具体取决于地面状态是否具有远距离订单。对于关键系统,我们开发了一种用于从晶格模型计算$ g $和$ h $的数值算法。我们为各种CFT计算$ g $和$ h $,并表明$ h $仅取决于中央费用,而$ g $取决于整个操作员的内容。

Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross-section, we introduce two related non-negative measures of tripartite entanglement $g$ and $h$. We prove structure theorems which show that states with nonzero $g$ or $h$ have nontrivial tripartite entanglement. We then establish that in 1D these tripartite entanglement measures are universal quantities that depend only on the emergent low-energy theory. For a gapped system, we argue that either $g\neq 0$ and $h=0$ or $g=h=0$, depending on whether the ground state has long-range order. For a critical system, we develop a numerical algorithm for computing $g$ and $h$ from a lattice model. We compute $g$ and $h$ for various CFTs and show that $h$ depends only on the central charge whereas $g$ depends on the whole operator content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源