论文标题
$ k3 $表面的几何量化的光谱收敛
Spectral convergence in geometric quantization on $K3$ surfaces
论文作者
论文摘要
我们从光谱收敛的角度研究了$ k3 $表面上的几何量化。我们对$ k3 $表面的特殊拉格朗日纤维进行了特殊的纤维化,以及一个趋于复杂结构限制的Hyper-kähler结构家庭,并显示出$ \ bar {\ partial} $ laplacians的光谱收敛性 - 量式线束上的光谱结构与Bohr-Sommerfeld-Sommerfeld-Sommerfeld fibibersers的光谱结构。
We study the geometric quantization on $K3$ surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the $K3$ surfaces and a family of hyper-Kähler structures tending to large complex structure limit, and show a spectral convergence of the $\bar{\partial}$-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.