论文标题
在段之前:部分监督实例细分中的弱注释类的前景提示
Prior to Segment: Foreground Cues for Weakly Annotated Classes in Partially Supervised Instance Segmentation
论文作者
论文摘要
实例分割方法需要具有昂贵且因此实例级掩码标签的大型数据集。部分监督的实例细分旨在通过使用更丰富的弱盒标签来通过有限的掩码标签来改善掩盖预测。在这项工作中,我们表明,通常在部分监督实例细分中使用的班级面具头很难学习仅使用盒子监督的弱注释类的前景概念。为了解决这个问题,我们引入了一个对象掩码先验(OPP),该对象掩盖了掩盖头的前景的一般概念,该概念由盒子分类头隐含在所有类的监督下。这有助于班级面罩的头部集中在感兴趣的区域(ROI)中的主要对象,并改善对弱注释类别的概括。我们使用强烈和弱监督的类别的不同分裂来测试可可数据集上的方法。我们的方法对面具R-CNN的基线有了显着改善,并在最先进的情况下获得了竞争性能,同时提供了更简单的体系结构。
Instance segmentation methods require large datasets with expensive and thus limited instance-level mask labels. Partially supervised instance segmentation aims to improve mask prediction with limited mask labels by utilizing the more abundant weak box labels. In this work, we show that a class agnostic mask head, commonly used in partially supervised instance segmentation, has difficulties learning a general concept of foreground for the weakly annotated classes using box supervision only. To resolve this problem we introduce an object mask prior (OMP) that provides the mask head with the general concept of foreground implicitly learned by the box classification head under the supervision of all classes. This helps the class agnostic mask head to focus on the primary object in a region of interest (RoI) and improves generalization to the weakly annotated classes. We test our approach on the COCO dataset using different splits of strongly and weakly supervised classes. Our approach significantly improves over the Mask R-CNN baseline and obtains competitive performance with the state-of-the-art, while offering a much simpler architecture.