论文标题

可选的堆和最佳的懒惰搜索树

Selectable Heaps and Optimal Lazy Search Trees

论文作者

Sandlund, Bryce, Zhang, Lingyi

论文摘要

我们显示$ o(\ log n)$提取时间提取有效优先级的最小功能可以推广到$ o(k \ log(n/k))$ time中的$ k $最小元素的提取(我们将$ \ log(x)$定义为$ max(x)$ axmax(x)$ time pro tition $ opiate $ o o o o o o o(o o o o o o o o o o o(o o o o o o o o)$ o(o o o o o o(o o)$ o(o o o o o(o o)$ o($ o。插入。我们可以在$ O(k \ log(n/k))$ o(k \ log(n/k))$ a amortized和糟糕的时间时,可以显示在经典的fibonacci堆和brodal队列的堆订购的树木上,可以应用堆的树(Kaplan等人,SOSA '19)。另外,我们还可以在两个堆(k \ log(n/k))$时间上显示$ k $元素的删除或无提取的选择的删除。令人惊讶的是,所有操作都是可能的,没有对原始斐波那契堆和brodal队列数据结构进行任何修改。 然后,我们将结果应用于懒惰的搜索树(Sandlund&Wild,Focs '20),创建基于可选堆的新间隔数据结构。这给出了最佳$ O(b + n)$ time懒惰搜索树的性能,从$ o(\ log(n/|δ_i|) + \ log \ log n)$降低插入复杂性到gap $Δ_i$ to $ o(\ log(\ log log(n/|δ_i|))$。当用作优先队列时,还可以使$ O(1)$ time合并操作以及其他情况。如果使用Brodal队列,则可以使懒惰搜索树的所有运行时间成为最坏情况。

We show the $O(\log n)$ time extract minimum function of efficient priority queues can be generalized to the extraction of the $k$ smallest elements in $O(k \log(n/k))$ time (we define $\log(x)$ as $\max(\log_2(x), 1)$.), which we prove optimal for comparison-based priority queues with $o(\log n)$ time insertion. We show heap-ordered tree selection (Kaplan et al., SOSA '19) can be applied on the heap-ordered trees of the classic Fibonacci heap and Brodal queue, in $O(k \log(n/k))$ amortized and worst-case time, respectively. We additionally show the deletion of $k$ elements or selection without extraction can be performed on both heaps, also in $O(k \log(n/k))$ time. Surprisingly, all operations are possible with no modifications to the original Fibonacci heap and Brodal queue data structures. We then apply the result to lazy search trees (Sandlund & Wild, FOCS '20), creating a new interval data structure based on selectable heaps. This gives optimal $O(B+n)$ time lazy search tree performance, lowering insertion complexity into a gap $Δ_i$ from $O(\log(n/|Δ_i|) + \log \log n)$ to $O(\log(n/|Δ_i|))$ time. An $O(1)$ time merge operation is also made possible when used as a priority queue, among other situations. If Brodal queues are used, all runtimes of the lazy search tree can be made worst-case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源