论文标题

成本和QoS的无服务器云计算

Cost- and QoS-Efficient Serverless Cloud Computing

论文作者

Denninnart, Chavit

论文摘要

基于云的无服务器计算系统,无论是公共或私人提供的,旨在从分配决策的详细信息中提供无限资源和抽象用户的幻想。为了提供低成本和较高的QoS,无服务器计算范式提供了可以利用的机会来实现目标。具体而言,在本文中,我们的策略是避免冗余计算,如果独立任务请求彼此相似,并且对于毫无意义的处理任务。我们探索了(a)处理服务所需的部分计算部分的主要方法,以及(b)积极启发任务,成功的机会很少,以改善系统的整体QoS。对于第一种方法,我们提出了一种机制来识别各种类型的“可合并”任务,如果计算重用作为组一起执行,则可以从计算重用中受益。为了广泛评估任务合并配置,我们量化了节省资源的幅度,然后利用实验数据来创建节省资源的预测指标。我们调查了多个合并方法的任务,这些任务适合不同的工作负载方案,以确定何时汇总任务以及如何分配它们,以使其他任务的QoS受到最小的影响。对于第二种方法,我们开发了跳过任务的机制,这些任务的准时完成的机会是不值得通过下降或推迟来追求的。我们确定了任务通过以进行安排和执行的任务的最小机会。我们根据到达工作负载和系统条件的多个特征来动态调整此类阈值。我们采用了近似计算来减少修剪机制的计算开销,并确保可以实际使用该机制。

Cloud-based serverless computing systems, either public or privately provisioned, aim to provide the illusion of infinite resources and abstract users from details of the allocation decisions. With the goal of providing a low cost and a high QoS, the serverless computing paradigm offers opportunities that can be harnessed to attain the goals. Specifically, our strategy in this dissertation is to avoid redundant computing, in cases where independent task requests are similar to each other and for tasks that are pointless to process. We explore two main approaches to (A) reuse part of computation needed to process the services and (B) proactively pruning tasks with a low chance of success to improve the overall QoS of the system. For the first approach, we propose a mechanism to identify various types of "mergeable" tasks, which can benefit from computational reuse if they are executed together as a group. To evaluate the task merging configurations extensively, we quantify the resource-saving magnitude and then leveraging the experimental data to create a resource-saving predictor. We investigate multiple tasks merging approaches that suit different workload scenarios to determine when it is appropriate to aggregate tasks and how to allocate them so that the QoS of other tasks is minimally affected. For the second approach, we developed the mechanisms to skip tasks whose chance of completing on time is not worth pursuing by drop or defer them. We determined the minimum chance of success thresholds for tasks to pass to get scheduled and executed. We dynamically adjust such thresholds based on multiple characteristics of the arriving workload and the system's conditions. We employed approximate computing to reduce the pruning mechanism's computational overheads and ensure that the mechanism can be used practically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源