论文标题
手性有效现场理论和核结合中的功率计数
Power counting in chiral effective field theory and nuclear binding
论文作者
论文摘要
Weinberg最初提出的手性有效野外理论($χ$ eft)承诺在低能核相互作用与量子染色体动力学(QCD)之间建立理论上的联系。但是,在当前的实施中尚未实现重新归一致化组(RG)不变性的重要特性及其对预测两种和三核系统以上原子核的后果尚不清楚。在这项工作中,我们介绍了$χ$ eft的最新RG不变配方的第一个系统,及其对结合能和其他可观察到的核系统的预测,其大量数量高达$ a = 16 $。具体而言,我们已经进行了无核壳模型和耦合聚类计算的$^3 $ h,$^{3,4} $ he,$^{6} $ li和$^{6} $ li,以及$^{16} $ o,以及使用几个最近的Power-counting(PC)方案(loe)和次要的(loe)(loe)(loe)的序列(nlo)(sup)(sepect)(loe)的序列(nlo)(supe)(均为no)(supe)(s)。扰动理论。我们的计算表明,对于具有质量数$ a \ leq 4 $的核可以获得RG不变和现实的预测。但是,我们发现$^{16} $ o相对于四个$α$ - 粒子阈值或变形或两者都没有。同样,我们发现$^{6} $ li地面状态位于$α$ -Deuteron分离阈值上方。这些结果与实验数据形成鲜明对比,并指向所有相关反对者的必要微调,或者在LO中以$χ$ eft缺乏必要的图表(例如三核力量)(例如,实际上描述了具有质量数量$ a> 4 $ a> 4 $ $ a> $ of ube ub eft的最新的RG Invariant PC方案。
Chiral effective field theory ($χ$EFT), as originally proposed by Weinberg, promises a theoretical connection between low-energy nuclear interactions and quantum chromodynamics (QCD). However, the important property of renormalization-group (RG) invariance is not fulfilled in current implementations and its consequences for predicting atomic nuclei beyond two- and three-nucleon systems has remained unknown. In this work we present a first and systematic study of recent RG-invariant formulations of $χ$EFT and their predictions for the binding energies and other observables of selected nuclear systems with mass-numbers up to $A =16$. Specifically, we have carried out ab initio no-core shell-model and coupled cluster calculations of the ground-state energy of $^3$H, $^{3,4}$He, $^{6}$Li, and $^{16}$O using several recent power-counting (PC) schemes at leading order (LO) and next-to-leading order (NLO), where the subleading interactions are treated in perturbation theory. Our calculations indicate that RG-invariant and realistic predictions can be obtained for nuclei with mass number $A \leq 4$. We find, however, that $^{16}$O is either unbound with respect to the four $α$-particle threshold, or deformed, or both. Similarly, we find that the $^{6}$Li ground-state resides above the $α$-deuteron separation threshold. These results are in stark contrast with experimental data and point to either necessary fine-tuning of all relevant counterterms, or that current state-of-the-art RG-invariant PC schemes at LO in $χ$EFT lack necessary diagrams -- such as three-nucleon forces -- to realistically describe nuclei with mass number $A>4$.