论文标题
具有二元分层代数的基本订单和$ \ Mathcal {s} $ - $ \ Mathcal {o} $中的子类别
Essential orders on stratified algebras with duality and $\mathcal{S}$-subcategories in $\mathcal{O}$
论文作者
论文摘要
我们证明了具有简单确定二元性的分层代数的基本顺序的独特性,从而推广了库勒米比尔(Coulembier)的最新结果,即准栖息地代数。我们将其应用于$ \ Mathcal {s} $ - BGG类别$ \ Mathcal {O} $的子类别的常规积分块进行分类。我们还描述了这些块的各种同源不变。
We prove uniqueness of the essential order for stratified algebras having simple preserving duality, generalizing a recent result of Coulembier for quasi-hereditary algebras. We apply this to classify, up to equivalence, regular integral blocks of $\mathcal{S}$-subcategories in the BGG category $\mathcal{O}$. We also describe various homological invariants of these blocks.