论文标题
中等雷诺数的流动式膜不稳定性
Flow-excited membrane instability at moderate Reynolds numbers
论文作者
论文摘要
在本文中,我们研究了浸入中等雷诺数的不稳定分离流中的三维(3D)柔性膜的流体结构相互作用(FSI)。我们采用了基于最近开发的分区迭代方案的身体构成变异求解器,用于将湍流流动与非线性结构动力学偶联。特别感兴趣的是了解3D柔性膜的流动不稳定性是非二维质量比,雷诺数数量和航空弹性数的函数。对于广泛的参数,我们检查了流体膜相互作用的两个独特的稳定性制度:变形稳态(DSS)和动态平衡状态(DBS)。我们提出了稳定相图,以划定质量比与雷诺数的参数空间与雷诺数的参数空间和质量比与航空弹性数的参数空间。基于航空弹性模式分析,我们观察到涡流脱落频率与膜振动频率之间的频率同步,该频率导致动态平衡状态下的自我维持的振动。为了表征频率锁定的起源,我们通过考虑增加的质量效应并采用较大的偏转理论来得出非线性固有频率的近似分析公式。通过我们系统的高保真数值研究,我们发现膜振动和模式转换的开始依赖于张力膜的固有频率与涡旋脱落频率或其谐波之间的频率锁定。这些关于膜流体弹性不稳定性的发现对基于膜机翼的无人系统和无人机的控制策略的设计和制定具有影响。
In this paper, we study the fluid-structure interaction (FSI) of a three-dimensional (3D) flexible membrane immersed in an unsteady separated flow at moderate Reynolds numbers. We employ a body-conforming variational FSI solver based on the recently developed partitioned iterative scheme for the coupling of turbulent fluid flow with nonlinear structural dynamics. Of particular interest is to understand the flow-excited instability of a 3D flexible membrane as a function of the non-dimensional mass ratio, Reynolds number and aeroelastic number. For a wide range of the parameters, we examine two distinctive stability regimes of fluid-membrane interaction: deformed-steady state (DSS) and dynamic balance state (DBS). We propose stability phase diagrams to demarcate the DSS and DBS regimes for the parameter space of mass ratio vs. Reynolds number and mass ratio vs. aeroelastic number. Based on the aeroelastic mode analysis, we observe a frequency synchronization between the vortex shedding frequency and the membrane vibration frequency which leads to self-sustained vibrations in the dynamic balance state. To characterize the origin of the frequency lock-in, we derive an approximate analytical formula for the nonlinear natural frequency by considering the added mass effect and employing a large deflection theory for a simply supported rectangular membrane. Through our systematic high-fidelity numerical investigation, we find that the onset of the membrane vibration and the mode transition has a dependence on the frequency lock-in between the natural frequency of the tensioned membrane and the vortex shedding frequency or its harmonics. These findings on the fluid-elastic instability of membranes have implications for the design and development of control strategies for membrane wing-based unmanned systems and drones.