论文标题

印度地区夏季季风降雨数据的基于深度学习的下限

Deep-learning based down-scaling of summer monsoon rainfall data over Indian region

论文作者

Kumar, Bipin, Chattopadhyay, Rajib, Singh, Manmeet, Chaudhari, Niraj, Kodari, Karthik, Barve, Amit

论文摘要

降尺度对于生成高分辨率观察数据是必要的,以验证在操作上的微区域级别的气候模型预测或监视降雨。动力学和统计缩减模型通常用于在较大域上以高分辨率网格数据获取信息。由于降雨的变异性取决于复杂的时空过程,导致非线性或混乱时空变化,因此没有一个单一的降尺度方法可以被认为足够有效。在具有复杂地形,准周期性和非线性的数据中,基于深度学习(DL)的方法为降低降雨量的数据提供了有效的解决方案,用于在高空间分辨率下进行区域气候预测和实时降雨观察数据。在这项工作中,我们采用了从超分辨率卷积神经网络(SRCNN)方法得出的三种深度学习算法,特别是在夏季季风季节,降水数据,尤其是IMD和TRMM数据来产生4倍的高分辨率下降降雨数据。在这里采用的三种算法,即SRCNN,堆叠的SRCNN和DEEPSD中,降雨幅度和最小根平方误差的最佳空间分布是由DeepSD的基于DEEPSD的降尺度产生的。因此,提倡使用DeepSD算法的使用供将来使用。我们发现,幅度和强度降雨模式的空间不连续性是降水降低降水的主要障碍。此外,我们将这些方法应用于模型后处理,尤其是ERA5数据。与观察相比,缩小的ERA5降雨数据显示,空间协方差和时间差异的分布要好得多。

Downscaling is necessary to generate high-resolution observation data to validate the climate model forecast or monitor rainfall at the micro-regional level operationally. Dynamical and statistical downscaling models are often used to get information at high-resolution gridded data over larger domains. As rainfall variability is dependent on the complex Spatio-temporal process leading to non-linear or chaotic Spatio-temporal variations, no single downscaling method can be considered efficient enough. In data with complex topographies, quasi-periodicities, and non-linearities, deep Learning (DL) based methods provide an efficient solution in downscaling rainfall data for regional climate forecasting and real-time rainfall observation data at high spatial resolutions. In this work, we employed three deep learning-based algorithms derived from the super-resolution convolutional neural network (SRCNN) methods, to precipitation data, in particular, IMD and TRMM data to produce 4x-times high-resolution downscaled rainfall data during the summer monsoon season. Among the three algorithms, namely SRCNN, stacked SRCNN, and DeepSD, employed here, the best spatial distribution of rainfall amplitude and minimum root-mean-square error is produced by DeepSD based downscaling. Hence, the use of the DeepSD algorithm is advocated for future use. We found that spatial discontinuity in amplitude and intensity rainfall patterns is the main obstacle in the downscaling of precipitation. Furthermore, we applied these methods for model data postprocessing, in particular, ERA5 data. Downscaled ERA5 rainfall data show a much better distribution of spatial covariance and temporal variance when compared with observation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源