论文标题

偏心纳米级核壳颗粒上的光学力和扭矩

Optical forces and torques on eccentric nanoscale core-shell particles

论文作者

Sun, Qiang, Dholakia, Kishan, Greentree, Andrew D

论文摘要

小颗粒的光学诱捕和操纵是探测微观液体特性的重要工具。特别是,微流变学利用微米级颗粒的操纵和旋转来探测局部粘度,尤其是在这些特性可能是其本地环境的函数的情况下,例如在细胞附近。为此,双重颗粒很有用,因为它们可以使用光学诱导的力和扭矩很容易控制,从而可以探测其本地环境。然而,可以在双重颗粒中诱导的光扭矩的大小很小,并且粒径的函数意味着,旋转流无法在长度尺度上轻易探测到比微米水平小得多。在这里,我们显示的建模表明,偏心球核壳纳米颗粒可用于生成相当大的光学扭矩。偏心率是芯中核心中心位移的结果。我们的结果表明,对于直径为90 〜nm至180 〜nm的颗粒,我们的旋转速率可能超过800〜Hz。这填补了微粒旋转的尺寸间隙,并用光学力填充。我们可能旋转的粒子直径几乎比迄今已成功旋转的最小双重颗粒小几乎要小。因此,偏心核壳纳米颗粒的旋转为生物素化学做出了重要贡献,并在纳米级环境中为流变学创造了新的机会。

The optical trapping and manipulation of small particles is an important tool for probing fluid properties at the microscale. In particular, microrheology exploits the manipulation and rotation of micron-scale particles to probe local viscosity, especially where these properties may be perturbed as a function of their local environment, for example in the vicinity of cells. To this end, birefringent particles are useful as they can be readily controlled using optically induced forces and torques, and thereby used to probe their local environment. However the magnitude of optical torques that can be induced in birefringent particles is small, and a function of the particle diameter, meaning that rotational flow cannot readily be probed on length scales much small than the micron level. Here we show modelling that demonstrates that eccentric spherical core-shell nanoparticles can be used to generate considerable optical torques. The eccentricity is a result of the displacement of the centre of the core from the shell. Our results show that, for particles ranging from 90~nm to 180~nm in diameter, we may achieve rotation rates exceeding 800~Hz. This fills a missing size gap in the rotation of microparticles with optical forces. The diameter of particle we may rotate is almost an order of magnitude smaller than the smallest birefringent particles that have been successfully rotated to date. The rotation of eccentric core-shell nanoparticles therefore makes an important contribution to biophotonics and creates new opportunities for rheology in nanoscale environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源