论文标题
链映射环境中的激发动态
Excitation dynamics in chain-mapped environments
论文作者
论文摘要
结构化环境的链映射是模拟开放量子系统动力学的最强大工具。一旦将环境授权或费米子自由度单位重新排列为一维结构,就可以利用密度矩阵重新归一化组(DMRG)的全部功率。除了导致开放量子系统动力学的有效和数值精确的模拟外,链映射还提供了对环境的独特视角:系统与环境之间的相互作用会产生扰动,这些扰动以有限的速度沿着一个维度的环境传播,从而提供了自然的光或因果关系。在这项工作中,我们调查了链型骨折环境中激发的运输。特别是,我们探讨了环境光谱密度形状,参数和温度以及沿量子谐波振荡器相应线性链的激发动力学之间的关系。我们的分析揭示了环境进化的基本特征,例如定位,渗透和固定电流的发作。
The chain mapping of structured environments is a most powerful tool for the simulation of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact simulations of open quantum systems dynamics, chain mapping provides an unique perspective on the environment: the interaction between the system and the environment creates perturbations that travel along the one dimensional environment at a finite speed, thus providing a natural notion of light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped bosonic environment. In particular, we explore the relation between the environmental spectral density shape, parameters and temperature, and the dynamics of excitations along the corresponding linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the environment evolution, such as localization, percolation and the onset of stationary currents.