论文标题
替代抽样方案下的EPP效应
The Epps effect under alternative sampling schemes
论文作者
论文摘要
时间和测量时间量表的选择对于我们选择表示金融中的信息和数据至关重要。此选择意味着用于描述金融系统的产生统计测量值的单位和聚合量表。它还定义了我们如何衡量不同交易工具之间的关系。当我们从高频时间量表,当个人贸易和报价事件发生时,当相关性以可以符合各种潜在模型的方式出现时,到了中尺度。目前尚不清楚哪种时间和抽样率适用于忠实地捕获决策的系统动态和资产相关性。 EPP效应是关键现象学,即伴随着与采样时间尺度选择的相关性的出现。在这里,我们考虑并比较在不同的抽样方案下的EPP效应,以对比三个时间选择:日历时间,体积时间和交易时间。使用基于霍克斯工艺的玩具模型,我们能够实现与经验动力学相符的模拟结果。具体而言,我们发现EPP效应均在所有三个时间定义下存在,并且与日历时间相比,在交易时间下,相关性出现的速度更快,而相关性在数量时间下线性出现。
Time and the choice of measurement time scales is fundamental to how we choose to represent information and data in finance. This choice implies both the units and the aggregation scales for the resulting statistical measurables used to describe a financial system. It also defines how we measure the relationship between different traded instruments. As we move from high-frequency time scales, when individual trade and quote events occur, to the mesoscales when correlations emerge in ways that can conform to various latent models; it remains unclear what choice of time and sampling rates are appropriate to faithfully capture system dynamics and asset correlations for decision making. The Epps effect is the key phenomenology that couples the emergence of correlations to the choice of sampling time scales. Here we consider and compare the Epps effect under different sampling schemes in order to contrast three choices of time: calendar time, volume time and trade time. Using a toy model based on a Hawkes process, we are able to achieve simulation results that conform well with empirical dynamics. Concretely, we find that the Epps effect is present under all three definitions of time and that correlations emerge faster under trade time compared to calendar time, whereas correlations emerge linearly under volume time.